
A simplification

The Fourier Series

The Fourier series

Analogy with projections

The component of the vector 𝑏 along the line spanned by 𝑎 is
𝑏T𝑎/𝑎T𝑎.

. . .

A Fourier series is projecting 𝑓(𝑥) onto sin 𝑥. Its component 𝑝
in this direction is exactly 𝑏1 sin 𝑥.

Euler’s formula

The complex exponential 𝑒𝑖𝑥 is a combination of cos 𝑥 and
sin 𝑥:

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

. . .

So we can rewrite the Fourier series using complex exponen-
tials:

𝑓(𝑥) = 𝑐0 + 𝑐1𝑒𝑖𝑥 + 𝑐2𝑒2𝑖𝑥 + ⋯ = ∑
𝑘

𝑐𝑘 ⋅ 𝑒𝑖𝑘𝑥

pause

1

. . .

The formula for finding the coefficients 𝑐𝑘 is the same as before,
but now we use the complex exponential functions 𝑒𝑖𝑘𝑥 instead
of the sines and cosines:

𝑐𝑘 = ∫
2𝜋

0
𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

Discrete Fourier Transform

Discrete Fourier Series

DFT matrix

⎡
⎢
⎢
⎢
⎣

𝑦0
𝑦1
𝑦2
⋮

𝑦𝑁−1

⎤
⎥
⎥
⎥
⎦

= 𝐹𝑐 =
⎡
⎢
⎢
⎢
⎣

1 1 1 … 1
1 𝑒−𝑖2𝜋/𝑁 𝑒−𝑖4𝜋/𝑁 … 𝑒−𝑖2𝜋(𝑁−1)/𝑁

1 𝑒−𝑖4𝜋/𝑁 𝑒−𝑖8𝜋/𝑁 … 𝑒−𝑖4𝜋(𝑁−1)/𝑁

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑒−𝑖2𝜋(𝑁−1)/𝑁 𝑒−𝑖4𝜋(𝑁−1)/𝑁 … 𝑒−𝑖2𝜋(𝑁−1)(𝑁−1)/𝑁

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
⋮

𝑐𝑁−1

⎤
⎥
⎥
⎥
⎦

Visualization

From Wikipedia, Original upload by
en:User:Glogger, CC BY-SA 3.0
http://creativecommons.org/
licenses/by-sa/3.0/, via Wikimedia
Commons

2

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Finding the Fourier coefficients

Inverse DFT

We have just shown two things:

1. The DFT can be written as a matrix-vector product y =
𝐹c.

2. The coefficients c can be found by c = 𝐹 ′y.

3. But of course it is also true from 1 that if 𝐹 is invertible,
that c = 𝐹 −1y. Therefore, 𝐹 −1 = 𝐹 ′ = 1

𝑁 𝐹 ∗.

4. This means that 𝐹 is unitary. Its rows and columns are
orthogonal.

A concrete example

Let’s take an example with 𝑁 = 4 and 𝑦 = (2, 4, 6, 8).

Make a table. Note that 𝑖2 = 𝑖6 = −1, 𝑖3 = 𝑖7 = −𝑖, and
𝑖4 = 1.

For n = 0:

k 𝑖2𝜋𝑘 × 0 𝑒𝑖2𝜋𝑘×0

0 0 1
1 0 1
2 0 1
3 0 1

. . .

For n = 1:

k 𝑖2𝜋𝑘 1
4 𝑒𝑖2𝜋𝑘 1

4

0 0 1

3

k 𝑖2𝜋𝑘 1
4 𝑒𝑖2𝜋𝑘 1

4

1 𝑖𝜋/2 𝑖
2 𝑖𝜋 −1 = 𝑖2

3 3𝑖𝜋/2 −𝑖 = 𝑖3

For n = 2:

k 𝑖2𝜋𝑘 2
4 𝑒𝑖2𝜋𝑘 2

4

0 0 1
1 𝑖𝜋 −1 = 𝑖2

2 2𝑖𝜋 1 = 𝑖4

3 3𝑖𝜋 −1 = 𝑖6

. . .

For n = 3:

k 𝑖2𝜋𝑘 3
4 𝑒𝑖2𝜋𝑘 3

4

0 0 1
1 3𝑖𝜋/2 −𝑖 = 𝑖3

2 3𝑖𝜋 −1 = 𝑖6

3 9𝑖𝜋/2 𝑖 = 𝑖9

Solving for the coefficients

𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 2
𝑐0 + 𝑖𝑐1 + 𝑖2𝑐2 + 𝑖3𝑐3 = 4
𝑐0 + 𝑖2𝑐1 + 𝑖4𝑐2 + 𝑖6𝑐3 = 6
𝑐0 + 𝑖3𝑐1 + 𝑖6𝑐2 + 𝑖9𝑐3 = 8

. . .

In other words, 𝐹𝑐 = 𝑦 for

4

𝐹 =
⎡
⎢⎢
⎣

1 1 1 1
1 𝑖 𝑖2 𝑖3

1 𝑖2 𝑖4 𝑖6

1 𝑖3 𝑖6 𝑖9

⎤
⎥⎥
⎦

Check that 𝐹𝐹 ′ = 𝐼 :

𝐹𝐹 ′ = 1
4

⎡
⎢⎢
⎣

1 1 1 1
1 𝑖 𝑖2 𝑖3

1 𝑖2 𝑖4 𝑖6

1 𝑖3 𝑖6 𝑖9

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1 1 1 1
1 (−𝑖) (−𝑖)2 (−𝑖)3

1 (−𝑖)2 (−𝑖)4 (−𝑖)6

1 (−𝑖)3 (−𝑖)6 (−𝑖)9

⎤
⎥⎥
⎦

= 𝐼

Check in Sympy:

from sympy import *
init_printing()

i = I
F = Matrix([[1, 1, 1, 1], [1, i, i**2, i**3], [1, i**2, i**4, i**6], [1, i**3, i**6, i**9]])

print("F:")
display(F)

Fp = 1/4 * F.conjugate()
print("F prime:")
display(Fp)

print("F F prime:")
display(F * Fp)

F:

5

F prime:

F F prime:

Simplest form of Fourier matrix

Then we can write the Fourier equation as

⎡
⎢
⎢
⎢
⎣

1 1 1 ⋅ 1
1 𝑤 𝑤2 ⋅ 𝑤𝑛−1

1 𝑤2 𝑤4 ⋅ 𝑤2(𝑛−1)

⋅ ⋅ ⋅ ⋅ ⋅
1 𝑤𝑛−1 𝑤2(𝑛−1) ⋅ 𝑤(𝑛−1)2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
⋅

𝑐𝑛−1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑦0
𝑦1
𝑦2
⋅

𝑦𝑛−1

⎤
⎥
⎥
⎥
⎦

, 𝑤 = 𝑒𝑖2𝜋/𝑛

6

Terminology

We call the matrix 𝐹 the DFT (Discrete Fourier Trans-
form) matrix. It is a square unitary matrix of size 𝑁 × 𝑁 .

. . .

The matrix 𝐹 ′ is the inverse DFT matrix. It is the complex
conjugate of 𝐹 divided by 𝑁 .

Summary

1. The DFT can be written as a matrix-vector product y =
𝐹c.

2. The coefficients c can be found by c = 𝐹 ′y.

3. F is easy to compute, with a simple formula for each entry.

4. (There’s actually a really really fast way to compute the
DFT using the FFT algorithm.)

Applications of the DFT

Filtering

The DFT is used in many applications, but one of the most
common is filtering.

. . .

For example, suppose we have a signal that is a sum of two
sinusoids:

𝑓(𝑥) = sin(2𝜋𝑥) + 0.5 sin(20𝜋𝑥)

7

import numpy as np
import matplotlib.pyplot as plt

N = 200
x = np.linspace(0, 1, N)
y = np.sin(2*np.pi*x) + 0.5*np.sin(20*np.pi*x)
yalone = np.sin(2*np.pi*x)

plt.plot(x, y, label='full signal', color='red')
plt.plot(x, yalone, label='low frequency only', color='blue')
plt.legend(['Full signal', 'low frequency only'])
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 Full signal
low frequency only

What’s the DFT of this signal?

from scipy.fft import fft, fftshift
yf = fft(y)
yfalone = fft(yalone)
make a non connected plot of yf

plt.plot(np.fft.fftfreq(200),np.abs(yf), color='red')
plt.plot(np.fft.fftfreq(200),np.abs(yfalone), color='blue')

8

plt.xlim(-0.25, 0.25)
plt.legend(['Full signal', 'low frequency only'])
plt.show()

0.2 0.1 0.0 0.1 0.2
0

20

40

60

80

100 Full signal
low frequency only

What’s with the double peaks?

make two subplots
ax1 = plt.subplot(2,1, 1)
ax2 = plt.subplot(2,1, 2)

ax1.plot(np.real(fftshift(yf)), color='red')
ax1.plot(np.real(fftshift(yfalone)), color='blue')
ax1.set_xlim(80, 120)
ax1.set_title("Real part")
ax2.plot(np.imag(fftshift(yf)), color='red')
ax2.plot(np.imag(fftshift(yfalone)), color='blue')
ax2.set_title("Imaginary part")

set x-axis to be from -100 to 100
plt.xlim(80, 120)
plt.legend(['Full signal', 'low frequency only'])

9

80 85 90 95 100 105 110 115 120
0.0

2.5

5.0

7.5
Real part

80 85 90 95 100 105 110 115 120
100

0

100
Imaginary part

Full signal
low frequency only

Reconstruct the signal

We can reconstruct the signal by taking the inverse DFT.

from scipy.fft import ifft

y_old = ifft(yf)

plt.plot(x, y+.1, label='Original (plus .1 for visibilty)')
plt.plot(x, y_old, label='Reconstruction')
plt.legend()
plt.show()

/Users/kendra/Library/Python/3.8/lib/python/site-packages/matplotlib/cbook/__init__.py:1345: ComplexWarning:

Casting complex values to real discards the imaginary part

10

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 Original (plus .1 for visibilty)
Reconstruction

Low-pass filtering

What if we just zero out the coefficient corresponding to the
second sinusoid:

. . .

yf_new = yf.copy()
yf_new[190] = 0
yf_new[10] = 0
plt.plot(np.abs(fftshift(yf_new)))
plt.title('Filtered DFT')
plt.show()

11

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100
Filtered DFT

Compute the inverse DFT:

from scipy.fft import ifft

y_new = ifft(yf_new)
y_old = ifft(yf)

plt.plot(x, y_new, label='filtered')
plt.plot(x, y_old, label='original reconstruction')
plt.plot(x,y, label='true')
plt.legend()
plt.show()

/Users/kendra/Library/Python/3.8/lib/python/site-packages/matplotlib/cbook/__init__.py:1345: ComplexWarning:

Casting complex values to real discards the imaginary part

12

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 filtered
original reconstruction
true

It’s pretty good!

find the ifft of the function with the zeroed out coefficients
change = ifft(yf_new-yf)

make two subplots
ax1 = plt.subplot(1,2, 1)

ax1.plot(x, change)
ax1.set_title('Original signal - filtered signal')

ax2 = plt.subplot(1,2, 2)
ax2.plot(x,yf_new-yf)
ax2.set_title('Original DFT - filtered DFT')
plt.show()

/Users/kendra/Library/Python/3.8/lib/python/site-packages/matplotlib/cbook/__init__.py:1345: ComplexWarning:

Casting complex values to real discards the imaginary part

13

0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

Original signal - filtered signal

0.0 0.5 1.0
8

7

6

5

4

3

2

1

0
Original DFT - filtered DFT

Try one more thing. Can we describe the change in the DFT
as a multiplicative vector? We sure can.

change = yf_new/yf
plt.plot(np.abs(fftshift(change)))
plt.title('DFT filtered / DFT original')
plt.show()

14

0 25 50 75 100 125 150 175 200
0.0

0.2

0.4

0.6

0.8

1.0
DFT filtered / DFT original

So we can describe the new DVD as the old DFT multiplied by
a vector of 1s and 0s.

The total process went like this:

1. Take the DFT of the signal.
2. Multiply the DFT by a vector of 1s and 0s to filter out

the high frequency.
3. Take the inverse DFT to get the filtered signal.

. . .

Filtering as convolution

Suppose we have a signal and we’d like to try to filter out the
high frequencies, but we don’t know which ones they are.

We could try with a simple filter like [1, 1, 1, 1, 1]/5. This is a
simple moving average filter.

That means that we replace each point in the signal with the
average of the 5 points before it.

15

Mathematically, this is:

𝑓filtered[𝑛] =
4

∑
𝑚=0

𝑓[𝑛 − 𝑚]/5

OK. We note that this can also be written as a convolution,
between the signal and the vector ℎ = [1, 1, 1, 1, 1, 0, 0, 0, ...]/5.,
where we have padded the vector with zeros so that it is the
same length as the signal vector.

That is, ℎ0 = 1/5, ℎ1 = 1/5, ℎ2 = 1/5, ℎ3 = 1/5, ℎ4 = 1/5,
and ℎ5 = 0, all the way to ℎ𝑛 = 0.

Then we can write this as:

𝑓filtered[𝑛] =
𝑛

∑
𝑚=0

𝑓[𝑛 − 𝑚]ℎ[𝑚]

This operation is called convolution.

. . .

It’s messy to compute the convolution directly. But we can do
it in the Fourier domain…

The convolution theorem

The convolution of two signals 𝑓 and ℎ is the inverse DFT of
the product of the DFTs of 𝑓 and ℎ.

. . .

In other words, if 𝑓 = ifft(𝐹) and ℎ = ifft(𝐻), then the convo-
lution of 𝑓 and ℎ is ifft(𝐹 ⋅ 𝐻).
. . .

That’s much easier to calculate – only a dot product!

16

Proof

(fill in if I have time)

Example

Let’s take the signal from before, 𝑓(𝑥) = sin(2𝜋𝑥) +
0.5 sin(20𝜋𝑥), and filter it with the moving average filter
ℎ = [1, 1, 1, 1, 1]/5.

from scipy.signal import convolve
N = 200
x = np.linspace(0, 1, N)
y = np.sin(2*np.pi*x) + 10*np.sin(3.3*np.pi*x+.2)+ 10*np.random.normal(0, 0.1, N)
h = np.array([1, 1,1,1,1])/5
y_filtered = convolve(y, h, mode='same')
plt.plot(x, y, label='original')
plt.plot(x, y_filtered, label='filtered')
plt.legend()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

10

5

0

5

10

original
filtered

Now try it again using the convolution theorem.

17

Steps:

1. Take the DFT of the signal.
2. Pad the filter with zeros to make it the same length as

the signal.
3. Take the DFT of the filter.
4. Multiply the two DFTs.
5. Take the inverse DFT to get the filtered signal.
6. Done!

yf = fft(y)
hf = fft(h, N) # pad h with zeros
y_filtered = ifft(yf*hf)
plt.plot(x, y, label='original')
plt.plot(x, y_filtered, label='filtered')
plt.legend()
plt.show()

/Users/kendra/Library/Python/3.8/lib/python/site-packages/matplotlib/cbook/__init__.py:1345: ComplexWarning:

Casting complex values to real discards the imaginary part

0.0 0.2 0.4 0.6 0.8 1.0

10

5

0

5

10

original
filtered

18

Then we can take the inverse DFT to get the filtered signal.

19

	The Fourier Series
	The Fourier series
	Analogy with projections
	Euler's formula

	Discrete Fourier Transform
	Discrete Fourier Series
	DFT matrix
	Visualization
	Finding the Fourier coefficients
	Inverse DFT
	A concrete example
	
	
	Solving for the coefficients
	
	
	Simplest form of Fourier matrix
	Terminology
	Summary

	Applications of the DFT
	Filtering
	
	
	Reconstruct the signal
	Low-pass filtering
	
	
	
	
	Filtering as convolution
	
	The convolution theorem
	Proof
	Example
	
	

