
Intro to Linear Systems

Outline for today

• Linear systems: what they are + a few examples
• Gauss-Jordan elimination (as a general-purpose method)
• What can go wrong with roundoff
• A simple fix: (partial) pivoting
• Ill-conditioning: sometimes the problem is the issue
• Polynomial interpolation as an example

Linear systems

Application number one: solving linear systems

• The first big thing we will use linear algebra for is solving
systems of linear equations.

• Hope to convince you that this is useful but not entirely
straightforward!

Linear equations

We all know what “linear” means: straight!

. . .

• A linear equation of one variable is of the form 𝑎𝑥+𝑏 = 0.

– Solution: A single point on the number line: 𝑥 = − 𝑏
𝑎

1

• A linear equation of two variables is of the form 𝑎𝑥+𝑏𝑦 +
𝑐 = 0.

– Solution: any pair of values (𝑥, 𝑦) that satisfies the
equation. These form a straight line in the plane.

• A linear equation of three variables is of the form 𝑎𝑥 +
𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.

– Solution: any triple of values (𝑥, 𝑦, 𝑧) that sat-
isfies the equation. These form a plane in
three-dimensional space.

• In general, a linear equation of 𝑛 variables is of the form
𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏 = 0.

Linear systems

• Linear system: a collection of linear equations involving
the same variables 𝑥1, 𝑥2, … , 𝑥𝑛.

• Each equation has its own set of coefficients 𝑎𝑖𝑗 and its
own right-hand side 𝑏𝑖. So the 3rd equation might look
like 𝑎31𝑥1 + 𝑎32𝑥2 + ⋯ + 𝑎3𝑛𝑥𝑛 = 𝑏3.

. . .

When we put them all together, we get a linear system:

⎧{{
⎨{{⎩

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2
⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚,

Why do we care about systems of equations?

We use equations to represent constraints (physics, data, bud-
gets, flows, etc.) When there are multiple constraints, we get a
system of equations.

. . .

Examples:

2

. . .

Of course, many equations we can think of won’t be linear…
But many things are!

• Once you write a model down, it often becomes (Ax=b)
• Then the question is: can we solve it reliably?

Examples of linear systems (we aren’t going
to solve them yet!)

Example 1: railroad cars

A chemical manufacturer wants to lease a fleet of 24 railroad
tank cars with a combined carrying capacity of 520,000 gal-
lons.

• Tank cars with three different carrying capacities are
available:

– 8,000 gallons
– 16,000 gallons
– 24,000 gallons.

• How many of each type of tank car should be leased?

. . .

Will we have a single solution?

3

Example 2: traffic flow.

• Numbers = # of vehicles/hr that enter and leave on that
street.

• 𝑥1, 𝑥2, 𝑥3, and 𝑥4: flow of traffic between the four inter-
sections.

• Number of vehicles entering each intersection should al-
ways equal the number leaving. E.g.:

– 1,500 vehicles enter the intersection of 5th Street and
Washington Avenue each hour

– 𝑥1 + 𝑥4 vehicles leave this intersection
– → 𝑥1 + 𝑥4 = 1, 500

• Find the traffic flow at each of the other three intersec-
tions.

• What is the # of vehicles that travel from Washington
Avenue to Lincoln Avenue on 5th Street?

4

Example: US population

• The U.S. population was approximately 75 million in
1900, 150 million in 1950, and 275 million in 2000.

• Find a quadratic equation whose graph passes through
the points (0, 75), (50, 150), (100, 275)

. . .

Wait, what? How is this a linear system?

. . .

There are three years that our graph needs to pass through:
1900, 1950, and 2000. We can write these as 𝑡1 = 0, 𝑡2 = 50,
and 𝑡3 = 100.

We can write the population as 𝑦1 = 75, 𝑦2 = 150, and 𝑦3 =
275.

. . .

We are asked to find a quadratic equation, which means it’s of
the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. We need to find the values of 𝑎, 𝑏,
and 𝑐 so that the equation passes through our three points.

For the first point, we have 𝑎𝑡2
1 + 𝑏𝑡1 + 𝑐 = 𝑦1. Since 𝑡1=0, this

becomes 𝑎02 + 𝑏0 + 𝑐 = 75.

If we do this for the other two points, we get the system:

⎧{
⎨{⎩

𝑎𝑡2
1 + 𝑏𝑡1 + 𝑐 = 𝑦1

𝑎𝑡2
2 + 𝑏𝑡2 + 𝑐 = 𝑦2

𝑎𝑡2
3 + 𝑏𝑡3 + 𝑐 = 𝑦3

. . .

Is this linear?

. . .

Yes, it is linear in 𝑎, 𝑏, and 𝑐, because none of them is raised
to a power other than 1.

5

The terms that are squared are just coefficients. We can even
calculate them: 𝑡2

2 = 2500, for instance. Then we can rewrite
the system as:

⎧{
⎨{⎩

0𝑎 + 𝑏0 + 𝑐 = 75
2500𝑎 + 50𝑏 + 𝑐 = 150
10000𝑎 + 100𝑏 + 𝑐 = 275

. . .

We see that we now have a standard system of linear equa-
tions.

Solving linear systems – bring in the linear
algebra!

Why not just solve by hand?

• We want procedures that work for many variables, not
just (2×2) or (3×3)

• We care about accuracy, but also stability: do small errors
get amplified?

• We care about efficiency and reusability (especially when
solving (Ax=b) for lots of different (b)’s)

Goals for algorithms

An algorithm should be:

• feasible
• accurate

– stable

• efficient

– reusable computations

6

Example: very simple linear system

We’ll get started with an example that is easy enough to solve
by hand. We’ll pay attention to what we do, and why.

2𝑥 − 𝑦 = 1
4𝑥 + 4𝑦 = 20

Augmented matrix

It was a little hard to keep track of the variables just there.

(Not really! It shouldn’t have been! But it’s late when I’m writ-
ing this, and my brain doesn’t work so well, I need something
easier…)

. . .

Make an augmented matrix to represent the problem.

Rules for an augmented matrix: - The numbers in the first col-
umn are the coefficients of the first variable, for each equation.
- The numbers in the second column are the coefficients of the
second variable, for each equation. And so on. - The numbers
in the last column are the right-hand sides of the equations.

Remember, our two equations were:

2𝑥 − 𝑦 = 1
4𝑥 + 4𝑦 = 20

. . .

So as an augmented matrix, they become:

7

𝑥 𝑦 = 𝑟.ℎ.𝑠.

[2 −1 1
4 4 20]

. . .

Our goal: manipulate the augmented matrix to solve the prob-
lem.

What things can we do while we are solving the
problem?

We are going to change around the numbers in our matrix with-
out changing the solution.

. . .

What does that mean? It means that we will manipulate the
matrix so it represents different systems of equations that have
the same solution.

. . .

For example, these two systems have the same solution:

2𝑥 − 𝑦 = 1
4𝑥 + 4𝑦 = 20

4𝑥 + 4𝑦 = 20
2𝑥 − 𝑦 = 1

. . .

We have simply swapped the order of the equations. They still
have the same solution.

How does this change the matrix? It swaps the first and second
rows.

8

𝑥 𝑦 = 𝑟.ℎ.𝑠.

[4 4 20
2 −1 1]

. . .

Swapping the rows of the matrix is equivalent to swapping the
order of the equations, and it does not change the solu-
tion.

Multiplying a row by a constant

We can also multiply one of our equations by a constant. For
example, if we multiply the second equation by 2, we get:

2𝑥 − 𝑦 = 1
8𝑥 + 8𝑦 = 40

. . .

This has the same solution as the original system.

. . .

How does this change the matrix? It multiplies the second row
by 2.

𝑥 𝑦 = 𝑟.ℎ.𝑠.

[2 −1 1
8 8 40]

Adding a multiple of one row to another

We did this when we were solving the problem by hand. We
subtracted two times the first row from the second row.

How does this change the matrix? It adds -2 times the first row
to the second row.

9

𝑥 𝑦 = 𝑟.ℎ.𝑠.

[2 −1 1
0 6 18]

Elementary Matrix Operations

When we do these on augmented matrices, the solutions are
unchanged…

1. 𝐸𝑖𝑗 : Swap: Switch the 𝑖th and 𝑗 th rows of the matrix.
2. 𝐸𝑖(𝑐) : Scale: Multiply the 𝑖th row by the nonzero con-

stant 𝑐.
3. 𝐸𝑖𝑗(𝑑) : Add: Add 𝑑 times the 𝑗th row to the 𝑖th row.

Our strategy

We are going to use a sequence of elementary row operations
to transform our augmented matrix into a form where we will
be able to read off the solution.

. . .

This form is called reduced row echelon form.

Reduced row echelon form

Here is an example of an augmented matrix in reduced row
echelon form:

𝑥 𝑦 = 𝑟.ℎ.𝑠.

[1 4 2
0 1 3]

. . .

It corresponds to the following system of equations:

10

𝑥 + 4𝑦 = 2
𝑦 = 3

. . .

See how easy that is to solve? We can just read from the bottom
up: 𝑦 = 3, and then 𝑥 + 4(3) = 2, so 𝑥 = 2 − 12 = −10.

. . .

Any time we can get an augmented matrix into reduced row
echelon form, it will be this easy to solve.

Rules for Reduced Row Echelon Form

Every matrix can be reduced by a sequence of elementary row
operations to one and only one reduced row echelon form:

• Nonzero rows of 𝑅 precede the zero rows.
• Column numbers of the leading entries of the nonzero

rows, say rows 1, 2, … , 𝑟, form an increasing sequence of
numbers 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑟.

• Each leading entry is a 1.
• Each leading entry has only zeros above it.

. . .

We just need to know which row operations to do, and in what
order. Then we can solve any linear system!

An algorithm for getting an augmented
matrix into reduced row echelon form

Gauss-Jordan elimination

1. Swap rows to get non-zero number in row 1, column 1
2. Get a 1 in the row 1, column 1.
3. Make all other entries in column 1 0.

11

4. Swap rows to get non-zero number in row 2, column 2.
Make this entry 1. Make all other entries in column 2 0.

5. Repeat step 4 for row 3, column 3. Continue moving
along the main diagonal until you reach the last row, or
until the number is zero.

. . .

Vocabulary: process of getting a 1 in a location, and then mak-
ing all other entries zeros in that column, is pivoting.

The number that is made a 1 is called the pivot element, and
the row that contains the pivot element is called the pivot
row.

G-J Elimination for our toy system

[4 4 20
2 −1 1]

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐸1(1

4 [1 1 5
2 −1 1] ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸12(−2) [1 1 5

0 −3 −9]

and then…

. . .

[1 1 5
0 −3 −9] ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝐸2(−1/3) [1 1 5

0 1 3] ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸12(−1) [1 0 2
0 1 3] .

. . .

Writing this back as a linear system, we have:

2𝑥 − 𝑦 = 1
4𝑥 + 4𝑦 = 20 ⟹ 1 ⋅ 𝑥 + 0 ⋅ 𝑦 = 2

0 ⋅ 𝑥 + 1 ⋅ 𝑦 = 3 ⟹ 𝑥 = 2
𝑦 = 3

12

Now you try: birds in a tree

There are 2 trees in a garden (tree “A” and “B”) and in both
trees are some birds.

The birds of tree A say to the birds of tree B that if one of you
comes to our tree, then our population will be double yours.

Then the birds of tree B tell the birds of tree A that if one of
you comes here, then our population will be equal to yours.

How many birds in each tree?

(Solve by making an augmented matrix and doing G-J elimina-
tion.)

https://www.mathsisfun.com/puzzles/birds-
in-trees.htmlExample: Mining

Meyer Ch 1.5
A mine produces silica, iron, and gold

Needs Money (in $$), operating time (in hours), and labor
(in person-hours).

• 1 pound of silica needs: $.0055, . 0011 hours of operating
time, and .0093 hours of labor.

• 1 pound of iron needs: $.095, . 01 operating hours, and
.025 labor hours.

• 1 pound of gold needs: $ 960, 112 operating hours, and
560 labor hours.

Mining example: from story (→) linear system

Suppose that during 600 hours of operation, exactly $ 5000 and
3000 labor-hours are used.

How much silica (𝑥), iron (𝑦), and gold (𝑧) were produced?

. . .

Set up the linear system whose solution will yield the values for
𝑥, 𝑦, and 𝑧.

13

. . .

.0055𝑥 + .095𝑦 + 960𝑧 = 5000 (dollars)
.0011𝑥 + .01𝑦 + 112𝑧 = 600 (operating hours)

.0093𝑥 + .025𝑦 + 560𝑧 = 3000 (labor hours)

. . .

Make the augmented matrix:

⎡⎢
⎣

.0055 .095 960 5000

.0011 .01 112 600

.0093 .025 560 3000
⎤⎥
⎦

We can solve this using Gauss-Jordan elimination.

from sympy.matrices import Matrix, eye, zeros, ones, diag, GramSchmidt
from sympy.core.numbers import Number
from sympy import print_latex, latex,N
def round_expr(expr, num_digits):

return expr.xreplace({n : round(n, num_digits) for n in expr.atoms(Number)})

Do the Gauss-Jordan elimination
M=Matrix([[.0055,.095,960,5000],[.0011,.01,112,600],[.0093,.025,560,3000]])
round_level = 2;
M2=N(M.elementary_row_op('n->n+km', row=1,row2=0, k=-(M[1,0]/M[0,0])),round_level)
M3=N(M2.elementary_row_op('n->n+km', row=2,row2=0, k=-(M2[2,0]/M2[0,0])),round_level)
M4=N(M3.elementary_row_op('n->n+km', row=2,row2=1, k=-(M3[2,1]/M3[1,1])),round_level)

from IPython.display import Markdown
def pp(x):

print("$"+latex(x)+"$")
def ppd(x):

print("$$"+latex(x)+"$$")
def mm(x):

Markdown(latex(x))

14

Getting into row echelon form, rounding after 3 digits

⎡⎢
⎣

0.0055 0.095 960 5000
0.0011 0.01 112 600
0.0093 0.025 560 3000

⎤⎥
⎦

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝐸12(−1

5) ⎡⎢
⎣

0.0055 0.095 9.6 ⋅ 102 5.0 ⋅ 103

0 −0.009 −80.0 −4.0 ⋅ 102

0.0093 0.025 5.6 ⋅ 102 3.0 ⋅ 103
⎤⎥
⎦

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝐸13(93

55) ⎡⎢
⎣

0.0055 0.095 9.6 ⋅ 102 5.0 ⋅ 103

0 −0.009 −80.0 −4.0 ⋅ 102

0 −0.14 −1.1 ⋅ 103 −5.4 ⋅ 103
⎤⎥
⎦

⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗
𝐸23(−14

.9) ⎡⎢
⎣

0.0055 0.095 9.6 ⋅ 102 5.0 ⋅ 103

0 −0.009 −80.0 −4.0 ⋅ 102

0 0 1.4 ⋅ 102 5.7 ⋅ 102
⎤⎥
⎦

Mining example: solve (and then compare to exact)

soln=M4[0:3,0:3].solve(rhs=M4[:,3])

This has solutions ⎡⎢
⎣

5.7 ⋅ 104

8.9 ⋅ 103

4.0
⎤⎥
⎦

.

. . .

How do these compare to the exact solutions? These are

M[0:3,0:3].solve(rhs=M[:,3])

⎡⎢
⎣

56753.6889897841
8626.56072644719
4.02951191827469

⎤⎥
⎦

Doing it again, rounding after 15 digits

15

Do the Gauss-Jordan elimination
M=Matrix([[.0055,.095,960,5000],[.0011,.01,112,600],[.0093,.025,560,3000]])
round_level = 15;
ml = latex(M)
M2=N(M.elementary_row_op('n->n+km', row=1,row2=0, k=-(M[1,0]/M[0,0])),round_level)
M3=N(M2.elementary_row_op('n->n+km', row=2,row2=0, k=-(M2[2,0]/M2[0,0])),round_level)
M4=N(M3.elementary_row_op('n->n+km', row=2,row2=1, k=-(M3[2,1]/M3[1,1])),round_level)

⎡⎢
⎣

0.0055 0.095 960 5000
0.0011 0.01 112 600
0.0093 0.025 560 3000

⎤⎥
⎦

→ ⎡⎢
⎣

0.0055 0.095 960.0 5000.0
0 −0.009 −80.0 −400.0

0.0093 0.025 560.0 3000.0
⎤⎥
⎦

→ ⎡⎢
⎣

0.0055 0.095 960.0 5000.0
0 −0.009 −80.0 −400.0
0 −0.135636363636364 −1063.27272727273 −5454.54545454545

⎤⎥
⎦

→

⎡⎢
⎣

0.0055 0.095 960.0 5000.0
0 −0.009 −80.0 −400.0
0 0 142.383838383838 573.737373737372

⎤⎥
⎦

soln2=M4[0:3,0:3].solve(rhs=M4[:,3])

This has solutions ⎡⎢
⎣

56753.6889897845
8626.56072644727
4.02951191827468

⎤⎥
⎦

.

Reminder, the exact solution was:

M[0:3,0:3].solve(rhs=M[:,3])

⎡⎢
⎣

56753.6889897841
8626.56072644719
4.02951191827469

⎤⎥
⎦

Takeaway (mining example)

• Gauss–Jordan gives the correct answer in exact arith-
metic.

• In floating-point arithmetic, intermediate rounding can
change the computed result.

• Next: we make “accuracy vs stability” concrete with
roundoff examples and pivoting.

16

Comparing the G-J algorithm with our goals

Reminder of goals

An algorithm should be:

• feasible
• accurate

– stable

• efficient

– reusable computations

Roundoff errors

Roundoff errors with G-J elimination

Try this on your calculator. What do you get?

((2
3 + 100) − 100) − 2

3
. . .

Should this be (0)?

Roundoff example: tiny (�) and loss of significance

• Let 𝜖 be a number so small that our calculator yields
1 + 𝜖 = 1.

• With this calculator, 1 + 1/𝜖 = (𝜖 + 1)/𝜖 = 1/𝜖
• Want to solve the linear system

•

𝜖𝑥1 + 𝑥2 = 1
𝑥1 − 𝑥2 = 0.

17

Roundoff errors with G-J elimination

With our calculator,

[𝜖 1 1
1 −1 0]

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗
𝐸21 (−1

𝜖) [𝜖 1 1
0 1

𝜖 −1
𝜖

] ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸2(𝜖) [𝜖 1 1
0 1 1] ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸12(−1) [𝜖 0 0

0 1 1]
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝐸1 (1

𝜖) [1 0 0
0 1 1] .

. . .

Calculated solution: 𝑥1 = 0, 𝑥2 = 1
Correct answer should be

𝑥1 = 𝑥2 = 1
1 + 𝜖 = 0.999999099999990 …

Sensitivity to small changes

Problem arose because we took a computational step where we
added two numbers of very different scale, essentially losing the
smaller number.

Led to a big changes in output!

There is no general cure for these difficulties…

Want to be aware of them, know when we are doing computa-
tions that might be susceptible.

Partial pivoting

We can improve performance of G-J by introducing a new step
into the algorithm:

1. Find the entry in the left column with the largest abso-
lute value. This entry is called the pivot. Perform row
interchange (if necessary), so that the pivot is in the first
row.

2. Use a row operation to get a 1 as the entry in the first
row and first column.

18

3. Use row operations to make all other entries as zeros in
column one.

4. Interchange rows if necessary to obtain a nonzero number
with the largest absolute value in the second row, second
column. Use a row operation to make this entry 1. Use
row operations to make all other entries as zeros in col-
umn two.

5. Repeat step 4 for row 3, column 3. Continue moving
along the main diagonal until you reach the last row, or
until the number is zero.

Using partial pivoting in our example

Ill-conditioned linear systems

Ill-conditioned linear systems

A system of linear equations is said to be ill-conditioned when
some small perturbation in the system (in the 𝑏s) can produce
relatively large changes in the exact solution (in the 𝑥’s). Oth-
erwise, the system is said to be well-conditioned.

Ill-conditioned linear systems

Meyer Ch 1.6
Consider

.835𝑥 + .667𝑦 = .168,

.333𝑥 + .266𝑦 = .067,

Exact solution:

𝑥 = 1 and 𝑦 = −1.

But if we change just one digit…

.835𝑥 + .667𝑦 = .168,

.333𝑥 + .266𝑦 = .066,

19

Now exact solution:

̂𝑥 = −666 and ̂𝑦 = 834

Measurement error (→) big changes in the exact
solution

What if 𝑏1 and 𝑏2 are the results of an experiment, need to be
read off a dial? Suppose:

• dial can be read to tolerance of ±.001,
• values for 𝑏1 and 𝑏2 are read as .168 and .067, respectively.

Then the exact solution is

(𝑥, 𝑦) = (1, −1)

• But due to uncertainty, we have

.167 ≤ 𝑏1 ≤ .169 and .066 ≤ 𝑏2 ≤ .068

What range of solutions could we see?

Table 1: Possible readings

𝑏1 𝑏2 𝑥 𝑦
.168 .067 1 -1
.167 .068 934 -1169
.169 .066 -932 1169

Geometrical interpretation

If two straight lines are almost parallel and if one of the lines is
moved only slightly, then the point of intersection is drastically
altered.

20

The point of intersection is the solution of the associated 2 × 2
linear system, so this is also drastically altered.

Takeaway: conditioning is about the problem

• Often in real life, coefficients are empirically obtained
• Will be off from “true” values by small amounts
• For ill-conditioned systems, this means that solutions can

be very far off from true solutions
• We’ll cover techniques for quantifying conditioning, later

in quarter
• For now, can just try making small changes to some coef-

ficients. Big changes in result? Ill-conditioned system!

Bridge to the next example: interpolation can create
ill-conditioned systems

• When we fit high-degree polynomials from data, we often
build matrices (e.g. Vandermonde matrices) that can be
numerically nasty.

• Next: polynomial interpolation as a concrete “looks rea-
sonable, behaves badly” example.

21

Example: Polynomial interpolation

Polynomial interpolation

https://colab.research.google.com/github/quantecon/lecture-
julia.notebooks/blob/main/tools_and_techniques/iterative_methods_sparsity.ipynb#scrollTo=9aa1791b

Suppose we’d like to find a polynomial that can interpolate a
given function.

Take points �0,…�� and values �0,…��

Simple way: finding the coefficients $ c_1, …c_n $ where

𝑃(𝑥) =
𝑁

∑
𝑖=0

𝑐𝑖𝑥𝑖

. . .

This is a system of equations:

𝑦0 = 𝑐0 + 𝑐1𝑥0 + … 𝑐𝑁𝑥𝑁
0

…
𝑦𝑁 = 𝑐0 + 𝑐1𝑥𝑁 + … 𝑐𝑁𝑥𝑁

𝑁

Polynomial interpolation

Or, stacking, 𝑐 = [𝑐0 … 𝑐𝑁], 𝑦 = [𝑦0 … 𝑦𝑁] , and

𝐴 = ⎡⎢
⎣

1 𝑥0 𝑥2
0 … 𝑥𝑁

0
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑥2

𝑁 … 𝑥𝑁
𝑁

⎤⎥
⎦

Let’s try solving this for a simple function, 𝑦 = 𝑒𝑥𝑝(𝑥).

Polynomial interpolation

𝑥 ∗ 𝑦

22

import numpy as np
import matplotlib.pyplot as plt

We are introducing a small error into b. Does it have a big impact on the x's we find?
def approx(n_points,jiggle=0):

x = np.linspace(1,12,num=n_points)
#xshuff = x+np.random.normal(size=n_points,scale=jiggle)
y = np.exp(x)+np.exp(x/4)*np.random.normal(size=n_points,scale=jiggle)
Get matrix of exponents of x values => A
n = len(x)
A = np.zeros([n,n])
for i in range(n):
A[::,i] = np.power(x.T,i)

b = y

Solve Ax=b linear eq. system to get
s = np.linalg.solve(A, b)
where x denotes coeffs of polynomial in reverse order
Flip polynomial coeffs
s = np.flip(s,axis=0)
Print polynomial coeffs
return s, x, y, A

s, x, y, A = approx(4)
Evaluate polynomial at X axis and plot result

We’ll start with picking 4 interpolating points: ⃗𝑥 =
[1. 4.66666667 8.33333333 12.]. Then we have our ma-
trix A:

np.set_printoptions(suppress=True)

𝐴 = ⎡⎢
⎣

1 𝑥0 𝑥2
0 … 𝑥𝑁

0
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑥2

𝑁 … 𝑥𝑁
𝑁

⎤⎥
⎦

=
⎡
⎢⎢
⎣

1.0 1.0 1.0 1.0
1.0 4.66666666666667 21.7777777777778 101.62962962963
1.0 8.33333333333333 69.4444444444444 578.703703703703
1.0 12.0 144.0 1728.0

⎤
⎥⎥
⎦

Our 𝑦 values are ⃗𝑦 = [2.71828183 106.3426754 4160.26200538 162754.791419].
We could solve this using Gauss-Jordan elimination, or here
the solving algorithm built into Numpy.

23

def make_plots(s, x, y, A):
x_axis = np.linspace(np.min(x), np.max(x), num=5000)
y_axis = np.polyval(s, x_axis)
y_pred = np.polyval(s,x)
plt.clf();
plt.plot(x_axis, y_axis);
plt.title("n = " + str(len(x)));
plt.plot(x,y,'ro');
plt.plot(x_axis,np.exp(x_axis));
plt.show();

def error_norm(s,x,y,A):
y_pred = np.polyval(s,x)
return(np.linalg.norm(y_pred-np.exp(x),np.inf))

Results for n=4 and n=10 points

_ = plt.figure(figsize=(6,6));
make_plots(*approx(4,jiggle=1000));

24

2 4 6 8 10 12

0

25000

50000

75000

100000

125000

150000

n = 4

_ = plt.figure(figsize=(6,6));
make_plots(*approx(15,jiggle=1000));

25

2 4 6 8 10 12

400000

300000

200000

100000

0

100000

n = 15

Max error for different values of n

my_error = []
for i in range(1,21):

my_error.append(error_norm(*approx(i)))

plt.clf()
plt.plot(my_error)
plt.xlabel("Number of interpolating points")
plt.ylabel("Maximum absolute error")
plt.show()

26

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of interpolating points

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

im
um

 a
bs

ol
ut

e
er

ro
r

1e 7

The problem: linear dependency

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 1.1, 0.1)
plt.plot(x, x, marker='o', linestyle='-', color='black', label='n=1')

colors = plt.cm.rainbow(np.linspace(0, 1, 6))

for i in range(1, 7):
plt.plot(x, x**i, marker='o', linestyle='-', color=colors[i-1], label=f'n={i+1}')

plt.title("x^n for n=1 to 7")
plt.legend()
plt.show()

27

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
x^n for n=1 to 7

n=1
n=2
n=3
n=4
n=5
n=6
n=7

Wrap-up

• Gauss-Jordan elimination is a good idea (systematic row
operations), but not always the best computational tool

• Roundoff can turn “should be zero” into “is not zero”
• Pivoting is a cheap way to make elimination behave much

better
• Ill-conditioning is different: sometimes the system itself

is sensitive

28

	Outline for today
	Linear systems
	Application number one: solving linear systems
	Linear equations
	Linear systems
	Why do we care about systems of equations?

	Examples of linear systems (we aren't going to solve them yet!)
	Example 1: railroad cars
	Example 2: traffic flow.
	Example: US population
	
	

	Solving linear systems – bring in the linear algebra!
	Why not just solve by hand?
	Goals for algorithms
	Example: very simple linear system
	Augmented matrix
	
	What things can we do while we are solving the problem?
	Multiplying a row by a constant
	Adding a multiple of one row to another
	Elementary Matrix Operations
	Our strategy
	Reduced row echelon form
	Rules for Reduced Row Echelon Form

	An algorithm for getting an augmented matrix into reduced row echelon form
	Gauss-Jordan elimination
	G-J Elimination for our toy system
	Now you try: birds in a tree
	Example: Mining
	Mining example: from story () linear system
	
	Getting into row echelon form, rounding after 3 digits
	Mining example: solve (and then compare to exact)
	Doing it again, rounding after 15 digits
	Takeaway (mining example)

	Comparing the G-J algorithm with our goals
	Reminder of goals

	Roundoff errors
	Roundoff errors with G-J elimination
	Roundoff example: tiny () and loss of significance
	Roundoff errors with G-J elimination
	Sensitivity to small changes
	Partial pivoting
	Using partial pivoting in our example

	Ill-conditioned linear systems
	Ill-conditioned linear systems
	Ill-conditioned linear systems
	Measurement error () big changes in the exact solution
	What range of solutions could we see?
	Geometrical interpretation
	Takeaway: conditioning is about the problem
	Bridge to the next example: interpolation can create ill-conditioned systems

	Example: Polynomial interpolation
	Polynomial interpolation
	Polynomial interpolation
	Polynomial interpolation
	Results for n=4 and n=10 points
	Max error for different values of n
	The problem: linear dependency
	Wrap-up

