
Ch4 Lecture 2

More Least Squares

Normal equations for multiple predictors

When we have multiple predictors, A is a matrix

. . .

Each column corresponds to a predictor variable.

. . .

x is a column vector of the coefficients we are trying to find, one per predictor.

. . .

What do the normal equations tell us? We can break them apart into one equation correspond-
ing to each column of A.

. . .

A𝑇 Ax = A𝑇 b
becomes

ai ⋅ Ax = ai ⋅ b for every i
ai ⋅ (b − Ax) = 0 for every i

. . .

We need to find x such that the residuals are orthogonal to every column of A.

1

Example

We have two predictors 𝑎1 and 𝑎2 and a response variable 𝑏. We have the following data:

𝑥1 𝑥2 𝑦
2 1 0
1 1 0
2 1 2

. . .

We are hoping to find a linear relationship of the form 𝛽1𝑥1 + 𝛽2𝑥2 = 𝑦 for some values of 𝛽1
and 𝛽2.

. . .

This would bring us the following system of equations:

2

2𝛽1 + 𝛽2 = 0
𝛽1 + 𝛽2 = 0

2𝛽1 + 𝛽2 = 2.
. . .

Obviously inconsistent! (2𝛽1 + 𝛽2 cannot equal both 0 and 2.)

. . .

Find the least squares solution using the normal equations:

Change variable names, so the 𝛽s are now x, the 𝑥s are now the columns A, and the 𝑦s are
now b.

𝐴 = ⎡⎢
⎣

2 1
1 1
2 1

⎤⎥
⎦

, and b = ⎡⎢
⎣

0
0
2

⎤⎥
⎦

. . .

Residuals are b − Ax.

Normal equations are A𝑇 Ax = A𝑇 b.

𝐴𝑇 𝐴 = [2 1 2
1 1 1] ⎡⎢

⎣

2 1
1 1
2 1

⎤⎥
⎦

= [9 5
5 3]

with inverse

(𝐴𝑇 𝐴)−1 = [9 5
5 3]

−1
= 1

2 [3 −5
−5 9]

. . .

𝐴𝑇 b = [2 1 2
1 1 1] ⎡⎢

⎣

0
0
2

⎤⎥
⎦

= [4
2]

3

Least Squares Solution

x = (𝐴𝑇 𝐴)−1 𝐴𝑇 b = 1
2 [3 −5

−5 9] [4
2] = [1

−1]

. . .

Back in our original variables, this means the best fit estimate for 𝛽1 is 1 and the best 𝛽2 is
-1.

Orthogonal and Orthonormal Sets

The set of vectors v1, v2, … , v𝑛 is an orthogonal set if v𝑖 ⋅ v𝑗 = 0 whenever 𝑖 ≠ 𝑗.

If, in addition, each vector has unit length, i.e., v𝑖 ⋅v𝑖 = 1, then the set of vectors is orthonor-
mal .

Orthogonal Coordinates Theorem

If v1, v2, … , v𝑛 are nonzero and orthogonal, and

v ∈ span {v1, v2, … , v𝑛},

v can be expressed uniquely (up to order) as a linear combination of v1, v2, … , v𝑛, namely

v = v1 ⋅ v
v1 ⋅ v1

v1 + v2 ⋅ v
v2 ⋅ v2

v2 + ⋯ + v𝑛 ⋅ v
v𝑛 ⋅ v𝑛

v𝑛

Proof

Since v ∈ span {v1, v2, … , v𝑛},

we can write v as a linear combination of the v𝑖 ’s:

v = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛

. . .

Now take the inner product of both sides with v𝑘:

. . .

Since v𝑘 ⋅ v𝑗 = 0 if 𝑗 ≠ 𝑘,

4

v𝑘 ⋅ v = v𝑘 ⋅ (𝑐1v1 + 𝑐2v2 + … ⋯ + 𝑐𝑛v𝑛)
= 𝑐1v𝑘 ⋅ v1 + 𝑐2v𝑘 ⋅ v2 + ⋯ + 𝑐𝑛v𝑘 ⋅ v𝑛 = 𝑐𝑘v𝑘 ⋅ v𝑘

. . .

Since v𝑘 ≠ 0, ‖v𝑘‖2 = v𝑘 ⋅ v𝑘 ≠ 0 so we can divide::

𝑐𝑘 = v𝑘 ⋅ v
v𝑘 ⋅ v𝑘

. . .

Any linear combination of an orthogonal set of nonzero vectors is the sum of its projections in
the direction of each vector in the set.

Orthogonal matrix

Suppose u1, u2, … , u𝑛 is an orthonormal basis of ℝ𝑛

. . .

Make these the column vectors of A: 𝐴 = [u1, u2, … , u𝑛]
. . .

Because the u𝑖 are orthonormal, u𝑇
𝑖 u𝑗 = 𝛿𝑖𝑗

. . .

Use this to calculate 𝐴𝑇 𝐴.

• its (𝑖, 𝑗) th entry is u𝑇
𝑛 u𝑛

• = 𝛿𝑖𝑗
• So we have = 𝐴𝑇 𝐴 = [𝛿𝑖𝑗] = 𝐼
• Therefore, 𝐴𝑇 = 𝐴−1

Orthogonal matrix

A square real matrix 𝑄 is called orthogonal if 𝑄𝑇 = 𝑄−1.

A square matrix 𝑈 is called unitary if 𝑈 ∗ = 𝑈−1.

5

Example

Show that the matrix 𝑅(𝜃) = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃] is orthogonal.

. . .

𝑅(𝜃)𝑇 𝑅(𝜃) = ([cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃])

𝑇
[cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃]

= [cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃] [cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃]

= [cos2 𝜃 + sin2 𝜃 cos 𝜃 sin 𝜃 − sin 𝜃 cos 𝜃
− cos 𝜃 sin 𝜃 + sin 𝜃 cos 𝜃 sin2 𝜃 + cos2 𝜃] = [1 0

0 1] ,

Rigidity of orthogonal (and unitary) matrices

This rotation matrix preserves vector lengths and angles between vectors (illustrate by hand).

Thus, 𝑅(𝜃)x ⋅ 𝑅(𝜃)y = x ⋅ y

. . .

This is true in general for orthogonal matrices:

𝑄x ⋅ 𝑄y = (𝑄x)𝑇 𝑄y = x𝑇 𝑄𝑇 𝑄y = x𝑇 y = x ⋅ y

also,

‖𝑄x‖2 = 𝑄x ⋅ 𝑄x = (𝑄x)𝑇 𝑄x = x𝑇 𝑄𝑇 𝑄x = x𝑇 x = ‖x‖2

Finding orthogonal bases

Gram-Schmidt Algorithm

Let w1, w2, … , w𝑛 be linearly independent vectors in a standard space.

. . .

Define vectors v1, v2, … , v𝑛 recursively:

Take each w𝑘 and subtract off the projection of w𝑘 onto each of the previous vectors
v1, v2, … , v𝑘−1

6

. . .

v𝑘 = w𝑘 − v1 ⋅ w𝑘
v1 ⋅ v1

v1 − v2 ⋅ w𝑘
v2 ⋅ v2

v2 − ⋯ − v𝑘−1 ⋅ w𝑘
v𝑘−1 ⋅ v𝑘−1

v𝑘−1, 𝑘 = 1, … , 𝑛

v𝑘 = w𝑘 − v1 ⋅ w𝑘
v1 ⋅ v1

v1 − v2 ⋅ w𝑘
v2 ⋅ v2

v2 − ⋯ − v𝑘−1 ⋅ w𝑘
v𝑘−1 ⋅ v𝑘−1

v𝑘−1, 𝑘 = 1, … , 𝑛

. . .

Then

(1) The vectors v1, v2, … , v𝑘 form an orthogonal set.

(2) For each index 𝑘 = 1, … , 𝑛,

. . .

span {w1, w2, … , w𝑘} = span {v1, v2, … , v𝑘}

Example

Let 𝑉 = 𝒞(𝐴) with the standard inner product and compute an orthonormal basis of 𝑉 ,
where

𝐴 =
⎡
⎢⎢
⎣

1 2 0 −1
1 −1 3 2
1 −1 3 2

−1 1 −3 1

⎤
⎥⎥
⎦

. . .

RREF of 𝐴 is:

𝑅 =
⎡
⎢⎢
⎣

1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥
⎦

. . .

The independent columns are columns 1, 2, and 4.

. . .

7

So let these be our w1, w2, w3.

Step 1: v1 = w1 = (1, 1, 1, −1)
. . .

Step 2: v2 = w2 − v1⋅w2
v1⋅v1

v1 . . .

= (2, −1, −1, 1) − −1
4 (1, 1, 1, −1) = 1

4(9, −3, −3, 3)
. . .

Step 3: v3 = w3 − v1⋅w3
v1⋅v1

v1 − v2⋅w3
v2⋅v2

v2

. . .

= (−1, 2, 2, 1) − 2
4(1, 1, 1, −1) − −18

108 (9, −3, −3, 3) = (0, 1, 1, 2)

Finding orthonormal basis

Now we need to normalize these vectors to get an orthonormal basis.

. . .

u1 = 1
‖v1‖v1 = 1

2(1, 1, 1, −1)
. . .

u2 = 1
‖v2‖v2 = 1

√(108)(9, −3, −3, 3)
etc.

QR Factorization

If 𝐴 is an 𝑚 × 𝑛 full-column-rank matrix, then 𝐴 = 𝑄𝑅, where the columns of the 𝑚 × 𝑛
matrix 𝑄 are orthonormal vectors and the 𝑛 × 𝑛 matrix 𝑅 is upper triangular with nonzero
diagonal entries.

. . .

Why do we care?

• Can use to solve linear systems:

. . .

8

• can be less susceptible to round-off error than Gauss-Jordan.
• Can be used to solve least squares problems (will show you how!)

How to find 𝑄 and 𝑅

1. Start with the columns of A, 𝐴 = [w1, w2, w3]. (For now assume they are linearly
independent.)

2. Do Gram-Schmidt on the columns of 𝐴:

. . .

v1 = w1

v2 = w2 − v1 ⋅ w2
v1 ⋅ v1

v1

v3 = w3 − v1 ⋅ w3
v1 ⋅ v1

v1 − v2 ⋅ w3
v2 ⋅ v2

v2.

. . .

3. Solve these equations for w1, w2, w3:

. . .

w1 = v1

w2 = v1 ⋅ w2
v1 ⋅ v1

v1 + v2

w3 = v1 ⋅ w3
v1 ⋅ v1

v1 + v2 ⋅ w3
v2 ⋅ v2

v2 + v3.

w1 = v1

w2 = v1 ⋅ w2
v1 ⋅ v1

v1 + v2

w3 = v1 ⋅ w3
v1 ⋅ v1

v1 + v2 ⋅ w3
v2 ⋅ v2

v2 + v3.

In matrix form, these become:

. . .

𝐴 = [w1, w2, w3] = [v1, v2, v3] ⎡
⎢
⎣

1 v1⋅w2
v1⋅v1

v1⋅w3
v1⋅v1

0 1 v2⋅w3
v2⋅v2

0 0 1
⎤
⎥
⎦

9

Normalizing 𝑄

We can normalize the columns of 𝑄 by dividing each column by its length.

. . .

Set q𝑗 = v𝑗/ ∥v𝑗∥..
. . .

𝐴 = [q1, q2, q3] ⎡⎢
⎣

‖v1‖ 0 0
0 ‖v2‖ 0
0 0 ‖v3‖

⎤⎥
⎦

⎡
⎢
⎣

1 v1⋅w2
v1⋅v1

v1⋅w3
v1⋅v1

0 1 v2⋅w3
v2,v2

0 0 1
⎤
⎥
⎦

. . .

= [q1, q2, q3] ⎡
⎢
⎣

‖v1‖ v1⋅w2
‖v1‖

v1⋅w3
‖v1‖

0 ‖v2‖ v2⋅w3
‖v2‖

0 0 ‖v3‖
⎤
⎥
⎦

.

Final form

𝐴 = [q1, q2, q3] ⎡
⎢
⎣

‖v1‖ v1⋅w2
‖v1‖

v1⋅w3
‖v1‖

0 ‖v2‖ v2⋅w3
‖v2‖

0 0 ‖v3‖
⎤
⎥
⎦

= [q1, q2, q3] ⎡⎢
⎣

‖v1‖ q1 ⋅ w2 q1 ⋅ w3
0 ‖v2‖ q2 ⋅ w3
0 0 ‖v3‖

⎤⎥
⎦

Example

Find the QR factorization of the matrix

𝐴 =
⎡
⎢⎢
⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥
⎦

. . .

We already found the Gram-Schmidt orthogonalization of this matrix:

10

v1 = w1 = (1, 1, 1, −1),
v2 = w2 − v1 ⋅ w2

v1 ⋅ v1
v1

= (2, −1, −1, 1) − −1
4 (1, 1, 1, −1) = 1

4(9, −3, −3, 3),

v3 = w3 − v1 ⋅ w3
v1 ⋅ v1

v1 − v2 ⋅ w3
v2 ⋅ v2

v2

= (−1, 2, 2, 1) − 2
4(1, 1, 1, −1) − −18

108 (9, −3, −3, 3)

= 1
4(−4, 8, 8, 4) − 1

4(2, 2, 2, −2) + 1
4(6, −2, −2, 2) = (0, 1, 1, 2).

. . .

u1 = v1
‖v1‖ = 1

2(1, 1, 1, −1),

u2 = v2
‖v2‖ = 1√

108(9, −3, −3, 3) = 1
2
√

3(3, −1, −1, 1),

u3 = v3
‖v3‖ = 1√

6(0, 1, 1, 2).

. . .

The u vectors we calculated before are the q vectors in the QR factorization.

‖v1‖ = ‖(1, 1, 1, −1)‖ = 2 and q1 = 1
2(1, 1, 1, −1)

‖v2‖ = ∥1
4(9, −3, −3, 3)∥ = 3

2
√

3 and q2 = 1
2
√

3(3, −1, −1, 1)

‖v3‖ = ‖(0, 1, 1, 2)‖ =
√

6 and q3 = 1√
6(0, 1, 1, 2)

. . .

⟨q1, w2⟩ = 1
2(1, 1, 1, −1) ⋅ (2, −1, −1, 1) = −1

2
⟨q1, w3⟩ = 1

2(1, 1, 1, −1) ⋅ (−1, 2, 2, 1) = 1

⟨q2, w3⟩ = 1
2
√

3(3, −1, −1, 1) ⋅ (−1, 2, 2, 1) = −
√

3.

11

. . .

𝐴 =
⎡
⎢
⎢
⎣

1/2 3/(2
√

3) 0
1/2 −1/(2

√
3) 1/

√
6

1/2 −1/(2
√

3) 1/
√

6
−1/2 1/(2

√
3) 2/

√
6

⎤
⎥
⎥
⎦

⎡⎢
⎣

2 −1/2 1
0 3

2
√

3 −
√

3
0 0

√
6

⎤⎥
⎦

= 𝑄𝑅

Solving a linear system with QR

We would like to solve the system 𝐴x = b.

. . .

𝑄𝑅x = b.

. . .

Multiply both sides by 𝑄𝑇 :

Since 𝑄 is orthogonal, 𝑄𝑇 𝑄 = 𝐼 and 𝑄𝑇 𝑄𝑅x = 𝑅x = 𝑄𝑇 b.

. . .

Suppose we have b = (1, 1, 1, 1). Then we are trying to solve

⎡⎢
⎣

2 −1/2 1
0 3

2
√

3 −
√

3
0 0

√
6

⎤⎥
⎦

x =
⎡
⎢
⎢
⎣

1/2 3/(2
√

3) 0
1/2 −1/(2

√
3) 1/

√
6

1/2 −1/(2
√

3) 1/
√

6
−1/2 1/(2

√
3) 2/

√
6

⎤
⎥
⎥
⎦

𝑇

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

import sympy as sp
Q = sp.Matrix([[1/2, 3/(2*sp.sqrt(3)), 0], [1/2, -1/(2*sp.sqrt(3)), 1/sp.sqrt(6)], [1/2, -1/(2*sp.sqrt(3)), 1/sp.sqrt(6)], [-1/2, 1/(2*sp.sqrt(3)), 2/sp.sqrt(6)]])
R = sp.Matrix([[2, -1/2, 1], [0, 3*sp.sqrt(3)/2, -sp.sqrt(3)], [0, 0, sp.sqrt(6)]])
b = sp.Matrix([1, 1, 1, 1])
print('$$\n Q^T b ='+sp.latex(Q.T*b)+'\n$$')
print('$$\n '+sp.latex(R)+' \mathbf{x} ='+sp.latex(Q.T*b)+'\n$$')

𝑄𝑇 𝑏 = ⎡
⎢
⎣

1.0√
3

3
2

√
6

3

⎤
⎥
⎦

12

⎡⎢
⎣

2 −0.5 1
0 3

√
3

2 −
√

3
0 0

√
6

⎤⎥
⎦

x = ⎡
⎢
⎣

1.0√
3

3
2

√
6

3

⎤
⎥
⎦

. . .

Find

x = ⎡⎢
⎣

1/3
2/3
2/3

⎤⎥
⎦

Check:

r = b − 𝐴x =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥
⎦

⎡⎢
⎣

1/3
2/3
2/3

⎤⎥
⎦

=
⎡
⎢⎢
⎣

0
0
0
0

⎤
⎥⎥
⎦

.

Least Squares with QR factorization

What if we have a system that’s not consistent?

. . .

pause

. . .

The QR factorization can be used to solve the least squares problem 𝐴x ≈ b.

13

14

Haar Wavelet Transform

Image compression idea

15

Haaar wavelet transform

In 1D, N data points {𝑥𝑘}𝑁
𝑘=1

. . .

Can average terms:

𝑦𝑘 = 1
2 (𝑥𝑘 + 𝑥𝑘−1) , 𝑘 ∈ ℤ

. . .

At the same time, we can apply a difference filter (“unsmoothing”):

𝑧𝑘 = 1
2 (𝑥𝑘 − 𝑥𝑘−1) , 𝑘 = 1, … , 𝑁

. . .

Idea: take our data, apply both filters to it and keep the results.

Example

𝑔(𝑡) = 3
2 + cos (𝜋

4 𝑡) − 1
4 cos (7𝜋

4 𝑡) , 0 ≤ 𝑡 ≤ 8
. . .

Sample at 𝑡𝑘 = 𝑘/5, 𝑘 = 0, 1, … , 40
. . .

16

Figure 1: x: black, y: red, z: green

1
2 (𝑥1 + 𝑥2) = 𝑦2

1
2 (𝑥3 + 𝑥4) = 𝑦4

1
2 (𝑥5 + 𝑥6) = 𝑦6

1
2 (−𝑥1 + 𝑥2) = 𝑧2

1
2 (−𝑥3 + 𝑥4) = 𝑧4

1
2 (−𝑥5 + 𝑥6) = 𝑧6

. . .

𝐴6x ≡ 1
2

⎡
⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑦2
𝑦4
𝑦6
𝑧2
𝑧4
𝑧6

⎤
⎥⎥⎥⎥⎥
⎦

17

Almost orthogonal

𝐴6𝐴𝑇
6 = 1

4

⎡
⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

1 0 0 −1 0 0
1 0 0 1 0 0
0 1 0 0 −1 0
0 1 0 0 1 0
0 0 1 0 0 −1
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

(1)

= 1
2

⎡
⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

= 1
2𝐼6 (2)

In general,

𝐴𝑁𝐴𝑇
𝑁 = 1

2𝐼𝑁

18

. . .

These matrices are nearly orthogonal.

Haar Wavelet Transform Matrix

Can make them orthogonal by dividing by
√

2:

𝑦𝑘 =
√

2
2 (𝑥𝑘 + 𝑥𝑘−1) , 𝑘 ∈ ℤ

and

𝑧𝑘 =
√

2
2 (𝑥𝑘 − 𝑥𝑘−1) , 𝑘 ∈ ℤ

. . .

𝑊𝑁 =
√

2
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 … 0 0
0 0 1 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1 1
… … … … … …
−1 1 0 0 … 0 0
0 0 −1 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
√

2
2

⎡⎢
⎣

𝑈
…
𝐿

⎤⎥
⎦

Moving to 2D

For a 2D image represented pixel-by-pixel in the matrix A, we can apply the 1D transform to
each row and then to each column: 𝑊𝑚𝐴𝑊 𝑇

𝑛

. . .

Result ends up in block form:

𝑊𝑚𝐴𝑊 𝑇
𝑛 = 2 [𝐵 𝑉

𝐻 𝐷]

. . .

. . .

19

(a) Original image (b) After transform (c) Enlarged blur (d) Edge image

Figure 2: Effects of Haar wavelet transform on an image.

𝐵 represents the blurred image of 𝐴, while 𝑉 , 𝐻 and 𝐷 represent edges of the image 𝐴 along
vertical, horizontal and diagonal directions, respectively.

20

	More Least Squares
	Normal equations for multiple predictors
	
	Example
	
	
	Least Squares Solution

	Orthogonal and Orthonormal Sets
	Orthogonal Coordinates Theorem
	Proof
	Orthogonal matrix
	Orthogonal matrix
	Example
	Rigidity of orthogonal (and unitary) matrices

	Finding orthogonal bases
	Gram-Schmidt Algorithm
	
	Example
	
	Finding orthonormal basis

	QR Factorization
	How to find Q and R
	
	Normalizing Q
	Final form
	Example
	
	
	Solving a linear system with QR
	
	
	Least Squares with QR factorization

	Haar Wavelet Transform
	Image compression idea
	Haaar wavelet transform
	Example
	
	Almost orthogonal
	
	Haar Wavelet Transform Matrix
	Moving to 2D

