Ch4 Lecture 2

More Least Squares

Normal equations for multiple predictors

When we have multiple predictors, A is a matrix
Each column corresponds to a predictor variable.
x is a column vector of the coefficients we are trying to find, one per predictor.

What do the normal equations tell us? We can break them apart into one equation correspond-
ing to each column of A.

ATAx =A"b
becomes
a; - Ax = a; - b for every i

a; - (b— Ax) =0 for every i

We need to find x such that the residuals are orthogonal to every column of A.
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Example

We have two predictors a; and a, and a response variable b. We have the following data:

ry Ty Y
2 1 0
1 1 0
2 1 2

We are hoping to find a linear relationship of the form 5,z + 8525 = y for some values of

and ;.

This would bring us the following system of equations:



28, + B, =0
B1+B8,=0
28, + By = 2.

Obviously inconsistent! (2/3; + 35 cannot equal both 0 and 2.)

Find the least squares solution using the normal equations:

Change variable names, so the s are now x, the xs are now the columns A, and the ys are
now b.

Residuals are b — Ax.

Normal equations are ATAx = ATb.
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Least Squares Solution
ot L[ 03 =5 [4] T 1
<=t 3354

Back in our original variables, this means the best fit estimate for 3, is 1 and the best 3, is
-1.

Orthogonal and Orthonormal Sets

The set of vectors vy, vs, ..., v, is an orthogonal set if v, - v, = 0 whenever i # j.

If, in addition, each vector has unit length, i.e., v,-v, = 1, then the set of vectors is orthonor-
mal .

Orthogonal Coordinates Theorem

If vi,vy,..., v, are nonzero and orthogonal, and
v € span{vy, vy, ..., Vv, },
v can be expressed uniquely (up to order) as a linear combination of vy, vs, ..., v,, namely
\ 24 VoV v, -V
vV = Vl + V2 + + VTL
Vi-Vi Vo' V3 Vn ' Vp
Proof
Since v € span{v,, vy, ..., Vv, },

we can write v as a linear combination of the v; ’s:

V=0Vttt v,

Now take the inner product of both sides with v,:

Since v, - v; = 0if j # k,



Vi V=V (eyvy + vy + o+, v,)

=CV V1 GV - Vo o+ C Vg - V), = GV -V

Since v, # 0, HV,CH2 = v}, - v, # 0 so we can divide::

Vk‘V

Cr =
Vk-Vk

Any linear combination of an orthogonal set of nonzero vectors is the sum of its projections in
the direction of each vector in the set.

Orthogonal matrix

Suppose u;, Uy, ..., u,, is an orthonormal basis of R™

Make these the column vectors of A: A = [uy,u,,...,u,]

Because the u; are orthonormal, u,:fpuj =0,

Use this to calculate AT A.

its (,7) th entry is ulu,,

ij
e So we have = ATA = [5ij] =7
o Therefore, AT = A~!

Orthogonal matrix

A square real matrix @ is called orthogonal if Q7 = Q.

A square matrix U is called unitary if U* = U~



Example

cosf —sinb

Show that the matrix R(#) = [ sind cos

] is orthogonal.

sin@ cos@ sinf cosf

R<9>TR<9>=([0059 —sinHDT{cose —sme]

_ cos@sin 6 cos —sinf

" | —sinfcosf sin @ cosf

_ cos? § + sin’ 0 cosfsinf) —sinflcosf | | 1 0
| —cosfsinf + sinfcosb sin? § + cos2 0 0 1|’

Rigidity of orthogonal (and unitary) matrices

This rotation matrix preserves vector lengths and angles between vectors (illustrate by hand).

Thus, R(O)x-R(f)y =x-y

This is true in general for orthogonal matrices:

Qx-Qy = (Qx)TQy =xTQTQy =xTy=x-y

also,

[Qx]?* = Qx - @x = (Qx)"Qx = x"QTQx = x"x = |x|?

Finding orthogonal bases

Gram-Schmidt Algorithm

Let wy, W, ..., w,, be linearly independent vectors in a standard space.

Define vectors vy, v, ..., v, recursively:

Take each w,; and subtract off the projection of w,; onto each of the previous vectors
V1, Vay ey Vg



V- Wg Vo - Wi Vi—1 " Wi

V=W — v, — Vg — o — ————v,. 4, k=1,..,n
Vi Vy Vo Va Vi-1"Vi-1
VoW Vo W Vi W
v,=w,— +—Ffy, 2 "ky kLl Thky 0 k=1,..,n
Vi Vy Vo Va Vi-1"Vi-1
Then
(1) The vectors vy, v,, ..., v, form an orthogonal set.

(2) For each index k=1,...,n,

Span {W17w27 7wk} = span {v17V27 7Vk:}

Example

Let V. = C(A) with the standard inner product and compute an orthonormal basis of V,
where

1 2 0 —1
1 -1 3 2
A 1 —1 3 2
—1 1 -3 1
RREF of A is:
1 0 2 0
01 -1 0
R= 0 0 01
00 0 0

The independent columns are columns 1, 2, and 4.



So let these be our w, wy, ws.

Step 1: vi =w; = (1,1,1,-1)

Vl'W2
ViVy

Step 2: vy = wy —

= (Za_L_la 1) - %(L 17 17_1) = %<9a_37_373)

ViW3 _ Vowg
vivy o1 Vavy 2

Step 3: vy = wy —

=(-1,2,2,1) — 2(1,1,1,—1) — 753(9,-3,-3,3) = (0,1,1,2)

Finding orthonormal basis

Now we need to normalize these vectors to get an orthonormal basis.

w = vi = 5(L 11, 1)

u, = MVQ = —1--(9,-3,-3,3)

QR Factorization

If A is an m x n full-column-rank matrix, then A = QQR, where the columns of the m x n
matrix () are orthonormal vectors and the n x n matrix R is upper triangular with nonzero
diagonal entries.

Why do we care?

e Can use to solve linear systems:



e can be less susceptible to round-off error than Gauss-Jordan.
o Can be used to solve least squares problems (will show you how!)

How to find ) and R

1. Start with the columns of A, A = [w;,w,, ws]. (For now assume they are linearly
independent.)

2. Do Gram-Schmidt on the columns of A:

Vi=Ww,
VW
V1-V1
VW Vo W
Vi = Wy 1 3 L 2 3y
Vi-Vy Vg Vo

W=V
v
Vi-Vvy
vV, W Vo + W
W = By, 4+ 22 By +v
3 1 2 3
Vi-Vvy Vg " Vo
Vl‘W2
Wy = Vi +Vy
v,V
1°V1
vV, W v
Vi-Vvy Vo Vo

In matrix form, these become:

1 1wy V1w

Vi'Vvy Vi'vy

_ _ VoWs3

A= [wy, Wy, W3] =[vy,vy,vg] | 0 1 VoVy
0 0 1



Normalizing ()

We can normalize the columns of @) by dividing each column by its length.

Set q; = vj/ ||VJ||

\ZR21 ViVy
A—[ql,qg,qg]{ 0 vy O 0 1 V2 Wy
0 0 sl

Va,Va

lvi 0 0 } I e
0 0 1

ViWy  Vi'W3

Ivill o7 N
=lapasas] | 0 vo R

0 0 vsl

Final form
r VW VW3
v+ ||1V1 HQ Il
A= [Q1,QQ,Q3] 0 HV2|| ﬁ
L 0 0 vs
vl ap-we ap-ws
=[a,aasl | 0 [vo| ay-ws
L 0 0 vl
Example

Find the QR factorization of the matrix

1 2 -1

1 -1 2

A= 1 -1 2
—1 1 1

We already found the Gram-Schmidt orthogonalization of this matrix:
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V=W = (171717_1)a

Vi W
Vo =Wy — ———2
ViV

—1 1
(2,—1,—-1,1) — Tﬂ’ 1,1,—-1) = 1(9, —3,-3,3),

VW Vy W
1 Wi, Vo Wi

Vo = Waq —
3 3 1 2
Vi Vi Vg © Vo

_ 18
108

1 1 1
= 1(—4,8,8,4) — 1(2,2,2, —2)+ 1(6, —-2,-2,2)=(0,1,1,2).

2
= (_1a2a2a1) - Z(LLla_l) (97_37_37 3)

v, 1

= 1 1,1,1,-1
B g D
Vo 1 1
W= 2 =~ (9,-3-3,3) = ——(3,—1,-1,1),
> Tl ~ VIS N !
Vg 1
uy = 5 = —(0,1,1,2).
'~ Tl ~ V6

The u vectors we calculated before are the q vectors in the QR factorization.

1
Hle = ”(17 17 17_1>H =2 a‘nd ql = 5(17 17 17_1>

1 3 1
”VZH = HZ(gv _3a _37 S)H == 5\/§ and qs = 27\/§<3, —1,—1, 1)
1
va| = [/(0,1,1,2)| = V6 and q5 = —(0,1,1, 2
vl = [( )l qa; \/6( )
1

(q, wy) = =(1,1,1,-1) - (2,—1,—1,1) = —5

1

2
1

(qy,ws) = 5(1, 1,1,-1)-(-1,2,2,1) =1

1
(a2, w3) = Tﬁ(g’_l’_l’ 1)-(—=1,2,2,1) = —V/3.
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/2 3/(2V3)
1/2 —=1/(2v/3) 1/v6
/2 —1/(2v'3)
—1/2 1/(2v3)

Solving a linear system with QR

We would like to solve the system Ax = b.
QRx=Db

Multiply both sides by Q7
Since @ is orthogonal, Q7Q = I and QTQRx = Rx = Q"b.

Suppose we have b = (1,1,1,1). Then we are trying to solve

19 ) /2 3/(2v3) 0 1

0 53 3 | x— 1/2 —1/(2v3) 1/V6 1
0 2 0 VG 1/2 —1/(2v3) 1/V6 1
~1/2 1/(2v3) 2/V6 1

import sympy as sp

Q = sp.Matrix([[1/2, 3/(2*sp.sqrt(3)), 01, [1/2, -1/(2*sp.sqrt(3)), 1/sp.sqrt(6)], [1/2, -1/
R = sp.Matrix([[2, -1/2, 1], [0, 3*sp.sqrt(3)/2, -sp.sqrt(3)], [0, O, sp.sqrt(6)]1])
b = sp.Matrix([1, 1, 1, 1])

print('$$\n Q°T b ='+sp.latex(Q.T*b)+'\n$$"')
print('$$\n '+sp.latex(R)+' \mathbf{x} ='+sp.latex(Q.T*b)+'\n$$')

|

1

o

Qb= {

o
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[an}

2 —-0.5 1 1.

_ | V3
0 P —V3lx=|%
G I E
Find
1/3
x=2/3
2/3
Check:
S N N SR R
r=b—Ax = - 2/3 | =
1 A N 0
1 -1 1 1 0

Least Squares with QR factorization

What if we have a system that’s not consistent?

pause

The QR factorization can be used to solve the least squares problem Ax ~ b.
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Haar Wavelet Transform

Image compression idea




Haaar wavelet transform

In 1D, N data points {a:k}]iil

Can average terms:

1
U =5 (@t 2p), kel

At the same time, we can apply a difference filter (“unsmoothing”):

1
zkzi(xk_*’nk*l)? k‘zl,,N

Idea: take our data, apply both filters to it and keep the results.

Example

g(t):%+cos(%t)—icos(%t),0§t§8

Sample at t, = k/5,k=0,1,...,40

16



2 3 4 5

Figure 1: x: black, y: red, z: green
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(—w3+24) = 24

11 00 007
00 11 00/

1] 00 00 11| a
AX=51 101 00 00|/
00 -1 1 00/ s

L 00 00 —1 1|
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(3 +24) =Yy % (x5 +26) = Ys
2

Y2
Yy
Ys
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Almost orthogonal

In general,
ANAY

Iy

1
2

0
0

0
0

1 1 0 0...

0 0 0 0...

1

0
0

0
0

—, 1 @ s

L...

g 00—l

3 U0 0 D..

1

1
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These matrices are nearly orthogonal.

Haar Wavelet Transform Matrix

Can make them orthogonal by dividing by v/2:

\/E
yk:7<$k+f’3k—1>, kez
and
2
Zk:\g(xk—xkﬁy kez
r 1 1 0 O 0 07
0 1 1 0 0
i _\/§ 0o 0 0 o0 1 1 \/i U
N_i cee cee = — cee
2 -1 1 0O O 0 0 2 L
0o 0 —1 1 0 O
L0 0 0 0 11|

Moving to 2D

For a 2D image represented pixel-by-pixel in the matrix A, we can apply the 1D transform to
each row and then to each column: W,, AW

Result ends up in block form:

W%Awg:2[3 V]

H D

19



(a) Original image (b) After transform (c) Enlarged blur (d) Edge image

Figure 2: Effects of Haar wavelet transform on an image.

B represents the blurred image of A, while V', H and D represent edges of the image A along
vertical, horizontal and diagonal directions, respectively.
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