
Ch4 Lecture 2

More Least Squares

Normal equations for multiple predictors

When we have multiple predictors, A is a matrix

. . .

Each column corresponds to a predictor variable.

. . .

x is a column vector of the coefficients we are trying to find, one per predictor.

. . .

What do the normal equations tell us? We can break them apart into one equation correspond-
ing to each column of A.

. . .

A𝑇 Ax = A𝑇 b
becomes

ai ⋅ Ax = ai ⋅ b for every i
ai ⋅ (b − Ax) = 0 for every i

. . .

We need to find x such that the residuals are orthogonal to every column of A.
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Example

We have two predictors 𝑎1 and 𝑎2 and a response variable 𝑏. We have the following data:

𝑥1 𝑥2 𝑦
2 1 0
1 1 0
2 1 2

. . .

We are hoping to find a linear relationship of the form 𝛽1𝑥1 + 𝛽2𝑥2 = 𝑦 for some values of 𝛽1
and 𝛽2.

. . .

This would bring us the following system of equations:
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2𝛽1 + 𝛽2 = 0
𝛽1 + 𝛽2 = 0

2𝛽1 + 𝛽2 = 2.
. . .

Obviously inconsistent! (2𝛽1 + 𝛽2 cannot equal both 0 and 2.)

. . .

Find the least squares solution using the normal equations:

Change variable names, so the 𝛽s are now x, the 𝑥s are now the columns A, and the 𝑦s are
now b.

𝐴 = ⎡⎢
⎣

2 1
1 1
2 1

⎤⎥
⎦

, and b = ⎡⎢
⎣

0
0
2

⎤⎥
⎦

. . .

Residuals are b − Ax.

Normal equations are A𝑇 Ax = A𝑇 b.

𝐴𝑇 𝐴 = [ 2 1 2
1 1 1 ] ⎡⎢

⎣

2 1
1 1
2 1

⎤⎥
⎦

= [ 9 5
5 3 ]

with inverse

(𝐴𝑇 𝐴)−1 = [ 9 5
5 3 ]

−1
= 1

2 [ 3 −5
−5 9 ]

. . .

𝐴𝑇 b = [ 2 1 2
1 1 1 ] ⎡⎢

⎣

0
0
2

⎤⎥
⎦

= [ 4
2 ]
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Least Squares Solution

x = (𝐴𝑇 𝐴)−1 𝐴𝑇 b = 1
2 [ 3 −5

−5 9 ] [ 4
2 ] = [ 1

−1 ]

. . .

Back in our original variables, this means the best fit estimate for 𝛽1 is 1 and the best 𝛽2 is
-1.

Orthogonal and Orthonormal Sets

The set of vectors v1, v2, … , v𝑛 is an orthogonal set if v𝑖 ⋅ v𝑗 = 0 whenever 𝑖 ≠ 𝑗.

If, in addition, each vector has unit length, i.e., v𝑖 ⋅v𝑖 = 1, then the set of vectors is orthonor-
mal .

Orthogonal Coordinates Theorem

If v1, v2, … , v𝑛 are nonzero and orthogonal, and

v ∈ span {v1, v2, … , v𝑛},

v can be expressed uniquely (up to order) as a linear combination of v1, v2, … , v𝑛, namely

v = v1 ⋅ v
v1 ⋅ v1

v1 + v2 ⋅ v
v2 ⋅ v2

v2 + ⋯ + v𝑛 ⋅ v
v𝑛 ⋅ v𝑛

v𝑛

Proof

Since v ∈ span {v1, v2, … , v𝑛},

we can write v as a linear combination of the v𝑖 ’s:

v = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛

. . .

Now take the inner product of both sides with v𝑘:

. . .

Since v𝑘 ⋅ v𝑗 = 0 if 𝑗 ≠ 𝑘,
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v𝑘 ⋅ v = v𝑘 ⋅ (𝑐1v1 + 𝑐2v2 + … ⋯ + 𝑐𝑛v𝑛)
= 𝑐1v𝑘 ⋅ v1 + 𝑐2v𝑘 ⋅ v2 + ⋯ + 𝑐𝑛v𝑘 ⋅ v𝑛 = 𝑐𝑘v𝑘 ⋅ v𝑘

. . .

Since v𝑘 ≠ 0, ‖v𝑘‖2 = v𝑘 ⋅ v𝑘 ≠ 0 so we can divide::

𝑐𝑘 = v𝑘 ⋅ v
v𝑘 ⋅ v𝑘

. . .

Any linear combination of an orthogonal set of nonzero vectors is the sum of its projections in
the direction of each vector in the set.

Orthogonal matrix

Suppose u1, u2, … , u𝑛 is an orthonormal basis of ℝ𝑛

. . .

Make these the column vectors of A: 𝐴 = [u1, u2, … , u𝑛]
. . .

Because the u𝑖 are orthonormal, u𝑇
𝑖 u𝑗 = 𝛿𝑖𝑗

. . .

Use this to calculate 𝐴𝑇 𝐴.

• its (𝑖, 𝑗) th entry is u𝑇
𝑛 u𝑛

• = 𝛿𝑖𝑗
• So we have = 𝐴𝑇 𝐴 = [𝛿𝑖𝑗] = 𝐼
• Therefore, 𝐴𝑇 = 𝐴−1

Orthogonal matrix

A square real matrix 𝑄 is called orthogonal if 𝑄𝑇 = 𝑄−1.

A square matrix 𝑈 is called unitary if 𝑈 ∗ = 𝑈−1.
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Example

Show that the matrix 𝑅(𝜃) = [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] is orthogonal.

. . .

𝑅(𝜃)𝑇 𝑅(𝜃) = ([ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ])

𝑇
[ cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ]

= [ cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃 ] [ cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ]

= [ cos2 𝜃 + sin2 𝜃 cos 𝜃 sin 𝜃 − sin 𝜃 cos 𝜃
− cos 𝜃 sin 𝜃 + sin 𝜃 cos 𝜃 sin2 𝜃 + cos2 𝜃 ] = [ 1 0

0 1 ] ,

Rigidity of orthogonal (and unitary) matrices

This rotation matrix preserves vector lengths and angles between vectors (illustrate by hand).

Thus, 𝑅(𝜃)x ⋅ 𝑅(𝜃)y = x ⋅ y

. . .

This is true in general for orthogonal matrices:

𝑄x ⋅ 𝑄y = (𝑄x)𝑇 𝑄y = x𝑇 𝑄𝑇 𝑄y = x𝑇 y = x ⋅ y

also,

‖𝑄x‖2 = 𝑄x ⋅ 𝑄x = (𝑄x)𝑇 𝑄x = x𝑇 𝑄𝑇 𝑄x = x𝑇 x = ‖x‖2

Finding orthogonal bases

Gram-Schmidt Algorithm

Let w1, w2, … , w𝑛 be linearly independent vectors in a standard space.

. . .

Define vectors v1, v2, … , v𝑛 recursively:

Take each w𝑘 and subtract off the projection of w𝑘 onto each of the previous vectors
v1, v2, … , v𝑘−1
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. . .

v𝑘 = w𝑘 − v1 ⋅ w𝑘
v1 ⋅ v1

v1 − v2 ⋅ w𝑘
v2 ⋅ v2

v2 − ⋯ − v𝑘−1 ⋅ w𝑘
v𝑘−1 ⋅ v𝑘−1

v𝑘−1, 𝑘 = 1, … , 𝑛

v𝑘 = w𝑘 − v1 ⋅ w𝑘
v1 ⋅ v1

v1 − v2 ⋅ w𝑘
v2 ⋅ v2

v2 − ⋯ − v𝑘−1 ⋅ w𝑘
v𝑘−1 ⋅ v𝑘−1

v𝑘−1, 𝑘 = 1, … , 𝑛

. . .

Then

(1) The vectors v1, v2, … , v𝑘 form an orthogonal set.

(2) For each index 𝑘 = 1, … , 𝑛,

. . .

span {w1, w2, … , w𝑘} = span {v1, v2, … , v𝑘}

Example

Let 𝑉 = 𝒞(𝐴) with the standard inner product and compute an orthonormal basis of 𝑉 ,
where

𝐴 =
⎡
⎢⎢
⎣

1 2 0 −1
1 −1 3 2
1 −1 3 2

−1 1 −3 1

⎤
⎥⎥
⎦

. . .

RREF of 𝐴 is:

𝑅 =
⎡
⎢⎢
⎣

1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥
⎦

. . .

The independent columns are columns 1, 2, and 4.

. . .
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So let these be our w1, w2, w3.

Step 1: v1 = w1 = (1, 1, 1, −1)
. . .

Step 2: v2 = w2 − v1⋅w2
v1⋅v1

v1 . . .

= (2, −1, −1, 1) − −1
4 (1, 1, 1, −1) = 1

4(9, −3, −3, 3)
. . .

Step 3: v3 = w3 − v1⋅w3
v1⋅v1

v1 − v2⋅w3
v2⋅v2

v2

. . .

= (−1, 2, 2, 1) − 2
4(1, 1, 1, −1) − −18

108 (9, −3, −3, 3) = (0, 1, 1, 2)

Finding orthonormal basis

Now we need to normalize these vectors to get an orthonormal basis.

. . .

u1 = 1
‖v1‖v1 = 1

2(1, 1, 1, −1)
. . .

u2 = 1
‖v2‖v2 = 1

√(108)(9, −3, −3, 3)
etc.

QR Factorization

If 𝐴 is an 𝑚 × 𝑛 full-column-rank matrix, then 𝐴 = 𝑄𝑅, where the columns of the 𝑚 × 𝑛
matrix 𝑄 are orthonormal vectors and the 𝑛 × 𝑛 matrix 𝑅 is upper triangular with nonzero
diagonal entries.

. . .

Why do we care?

• Can use to solve linear systems:

. . .
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• can be less susceptible to round-off error than Gauss-Jordan.
• Can be used to solve least squares problems (will show you how!)

How to find 𝑄 and 𝑅

1. Start with the columns of A, 𝐴 = [w1, w2, w3]. (For now assume they are linearly
independent.)

2. Do Gram-Schmidt on the columns of 𝐴:

. . .

v1 = w1

v2 = w2 − v1 ⋅ w2
v1 ⋅ v1

v1

v3 = w3 − v1 ⋅ w3
v1 ⋅ v1

v1 − v2 ⋅ w3
v2 ⋅ v2

v2.

. . .

3. Solve these equations for w1, w2, w3:

. . .

w1 = v1

w2 = v1 ⋅ w2
v1 ⋅ v1

v1 + v2

w3 = v1 ⋅ w3
v1 ⋅ v1

v1 + v2 ⋅ w3
v2 ⋅ v2

v2 + v3.

w1 = v1

w2 = v1 ⋅ w2
v1 ⋅ v1

v1 + v2

w3 = v1 ⋅ w3
v1 ⋅ v1

v1 + v2 ⋅ w3
v2 ⋅ v2

v2 + v3.

In matrix form, these become:

. . .

𝐴 = [w1, w2, w3] = [v1, v2, v3] ⎡
⎢
⎣

1 v1⋅w2
v1⋅v1

v1⋅w3
v1⋅v1

0 1 v2⋅w3
v2⋅v2

0 0 1
⎤
⎥
⎦
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Normalizing 𝑄

We can normalize the columns of 𝑄 by dividing each column by its length.

. . .

Set q𝑗 = v𝑗/ ∥v𝑗∥..
. . .

𝐴 = [q1, q2, q3] ⎡⎢
⎣

‖v1‖ 0 0
0 ‖v2‖ 0
0 0 ‖v3‖

⎤⎥
⎦

⎡
⎢
⎣

1 v1⋅w2
v1⋅v1

v1⋅w3
v1⋅v1

0 1 v2⋅w3
v2,v2

0 0 1
⎤
⎥
⎦

. . .

= [q1, q2, q3] ⎡
⎢
⎣

‖v1‖ v1⋅w2
‖v1‖

v1⋅w3
‖v1‖

0 ‖v2‖ v2⋅w3
‖v2‖

0 0 ‖v3‖
⎤
⎥
⎦

.

Final form

𝐴 = [q1, q2, q3] ⎡
⎢
⎣

‖v1‖ v1⋅w2
‖v1‖

v1⋅w3
‖v1‖

0 ‖v2‖ v2⋅w3
‖v2‖

0 0 ‖v3‖
⎤
⎥
⎦

= [q1, q2, q3] ⎡⎢
⎣

‖v1‖ q1 ⋅ w2 q1 ⋅ w3
0 ‖v2‖ q2 ⋅ w3
0 0 ‖v3‖

⎤⎥
⎦

Example

Find the QR factorization of the matrix

𝐴 =
⎡
⎢⎢
⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥
⎦

. . .

We already found the Gram-Schmidt orthogonalization of this matrix:
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v1 = w1 = (1, 1, 1, −1),
v2 = w2 − v1 ⋅ w2

v1 ⋅ v1
v1

= (2, −1, −1, 1) − −1
4 (1, 1, 1, −1) = 1

4(9, −3, −3, 3),

v3 = w3 − v1 ⋅ w3
v1 ⋅ v1

v1 − v2 ⋅ w3
v2 ⋅ v2

v2

= (−1, 2, 2, 1) − 2
4(1, 1, 1, −1) − −18

108 (9, −3, −3, 3)

= 1
4(−4, 8, 8, 4) − 1

4(2, 2, 2, −2) + 1
4(6, −2, −2, 2) = (0, 1, 1, 2).

. . .

u1 = v1
‖v1‖ = 1

2(1, 1, 1, −1),

u2 = v2
‖v2‖ = 1√

108(9, −3, −3, 3) = 1
2
√

3(3, −1, −1, 1),

u3 = v3
‖v3‖ = 1√

6(0, 1, 1, 2).

. . .

The u vectors we calculated before are the q vectors in the QR factorization.

‖v1‖ = ‖(1, 1, 1, −1)‖ = 2 and q1 = 1
2(1, 1, 1, −1)

‖v2‖ = ∥1
4(9, −3, −3, 3)∥ = 3

2
√

3 and q2 = 1
2
√

3(3, −1, −1, 1)

‖v3‖ = ‖(0, 1, 1, 2)‖ =
√

6 and q3 = 1√
6(0, 1, 1, 2)

. . .

⟨q1, w2⟩ = 1
2(1, 1, 1, −1) ⋅ (2, −1, −1, 1) = −1

2
⟨q1, w3⟩ = 1

2(1, 1, 1, −1) ⋅ (−1, 2, 2, 1) = 1

⟨q2, w3⟩ = 1
2
√

3(3, −1, −1, 1) ⋅ (−1, 2, 2, 1) = −
√

3.
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. . .

𝐴 =
⎡
⎢
⎢
⎣

1/2 3/(2
√

3) 0
1/2 −1/(2

√
3) 1/

√
6

1/2 −1/(2
√

3) 1/
√

6
−1/2 1/(2

√
3) 2/

√
6

⎤
⎥
⎥
⎦

⎡⎢
⎣

2 −1/2 1
0 3

2
√

3 −
√

3
0 0

√
6

⎤⎥
⎦

= 𝑄𝑅

Solving a linear system with QR

We would like to solve the system 𝐴x = b.

. . .

𝑄𝑅x = b.

. . .

Multiply both sides by 𝑄𝑇 :

Since 𝑄 is orthogonal, 𝑄𝑇 𝑄 = 𝐼 and 𝑄𝑇 𝑄𝑅x = 𝑅x = 𝑄𝑇 b.

. . .

Suppose we have b = (1, 1, 1, 1). Then we are trying to solve

⎡⎢
⎣

2 −1/2 1
0 3

2
√

3 −
√

3
0 0

√
6

⎤⎥
⎦

x =
⎡
⎢
⎢
⎣

1/2 3/(2
√

3) 0
1/2 −1/(2

√
3) 1/

√
6

1/2 −1/(2
√

3) 1/
√

6
−1/2 1/(2

√
3) 2/

√
6

⎤
⎥
⎥
⎦

𝑇

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

import sympy as sp
Q = sp.Matrix([[1/2, 3/(2*sp.sqrt(3)), 0], [1/2, -1/(2*sp.sqrt(3)), 1/sp.sqrt(6)], [1/2, -1/(2*sp.sqrt(3)), 1/sp.sqrt(6)], [-1/2, 1/(2*sp.sqrt(3)), 2/sp.sqrt(6)]])
R = sp.Matrix([[2, -1/2, 1], [0, 3*sp.sqrt(3)/2, -sp.sqrt(3)], [0, 0, sp.sqrt(6)]])
b = sp.Matrix([1, 1, 1, 1])
print('$$\n Q^T b ='+sp.latex(Q.T*b)+'\n$$')
print('$$\n '+sp.latex(R)+' \mathbf{x} ='+sp.latex(Q.T*b)+'\n$$')

𝑄𝑇 𝑏 = ⎡
⎢
⎣

1.0√
3

3
2

√
6

3

⎤
⎥
⎦
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⎡⎢
⎣

2 −0.5 1
0 3

√
3

2 −
√

3
0 0

√
6

⎤⎥
⎦

x = ⎡
⎢
⎣

1.0√
3

3
2

√
6

3

⎤
⎥
⎦

. . .

Find

x = ⎡⎢
⎣

1/3
2/3
2/3

⎤⎥
⎦

Check:

r = b − 𝐴x =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥
⎦

⎡⎢
⎣

1/3
2/3
2/3

⎤⎥
⎦

=
⎡
⎢⎢
⎣

0
0
0
0

⎤
⎥⎥
⎦

.

Least Squares with QR factorization

What if we have a system that’s not consistent?

. . .

pause

. . .

The QR factorization can be used to solve the least squares problem 𝐴x ≈ b.
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Haar Wavelet Transform

Image compression idea
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Haaar wavelet transform

In 1D, N data points {𝑥𝑘}𝑁
𝑘=1

. . .

Can average terms:

𝑦𝑘 = 1
2 (𝑥𝑘 + 𝑥𝑘−1) , 𝑘 ∈ ℤ

. . .

At the same time, we can apply a difference filter (“unsmoothing”):

𝑧𝑘 = 1
2 (𝑥𝑘 − 𝑥𝑘−1) , 𝑘 = 1, … , 𝑁

. . .

Idea: take our data, apply both filters to it and keep the results.

Example

𝑔(𝑡) = 3
2 + cos (𝜋

4 𝑡) − 1
4 cos (7𝜋

4 𝑡) , 0 ≤ 𝑡 ≤ 8
. . .

Sample at 𝑡𝑘 = 𝑘/5, 𝑘 = 0, 1, … , 40
. . .
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Figure 1: x: black, y: red, z: green

1
2 (𝑥1 + 𝑥2) = 𝑦2

1
2 (𝑥3 + 𝑥4) = 𝑦4

1
2 (𝑥5 + 𝑥6) = 𝑦6

1
2 (−𝑥1 + 𝑥2) = 𝑧2

1
2 (−𝑥3 + 𝑥4) = 𝑧4

1
2 (−𝑥5 + 𝑥6) = 𝑧6

. . .

𝐴6x ≡ 1
2

⎡
⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑦2
𝑦4
𝑦6
𝑧2
𝑧4
𝑧6

⎤
⎥⎥⎥⎥⎥
⎦
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Almost orthogonal

𝐴6𝐴𝑇
6 = 1

4

⎡
⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

1 0 0 −1 0 0
1 0 0 1 0 0
0 1 0 0 −1 0
0 1 0 0 1 0
0 0 1 0 0 −1
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

(1)

= 1
2

⎡
⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

= 1
2𝐼6 (2)

In general,

𝐴𝑁𝐴𝑇
𝑁 = 1

2𝐼𝑁

18



. . .

These matrices are nearly orthogonal.

Haar Wavelet Transform Matrix

Can make them orthogonal by dividing by
√

2:

𝑦𝑘 =
√

2
2 (𝑥𝑘 + 𝑥𝑘−1) , 𝑘 ∈ ℤ

and

𝑧𝑘 =
√

2
2 (𝑥𝑘 − 𝑥𝑘−1) , 𝑘 ∈ ℤ

. . .

𝑊𝑁 =
√

2
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 … 0 0
0 0 1 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1 1
… … … … … …
−1 1 0 0 … 0 0
0 0 −1 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
√

2
2

⎡⎢
⎣

𝑈
…
𝐿

⎤⎥
⎦

Moving to 2D

For a 2D image represented pixel-by-pixel in the matrix A, we can apply the 1D transform to
each row and then to each column: 𝑊𝑚𝐴𝑊 𝑇

𝑛

. . .

Result ends up in block form:

𝑊𝑚𝐴𝑊 𝑇
𝑛 = 2 [ 𝐵 𝑉

𝐻 𝐷 ]

. . .

. . .
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(a) Original image (b) After transform (c) Enlarged blur (d) Edge image

Figure 2: Effects of Haar wavelet transform on an image.

𝐵 represents the blurred image of 𝐴, while 𝑉 , 𝐻 and 𝐷 represent edges of the image 𝐴 along
vertical, horizontal and diagonal directions, respectively.
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