Chb Lecture 1

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

An eigenvector of A is a nonzero vector x in R™ (or C") such that for some scalar A\, we
have

Ax = \x

Why do we care? One reason: matrix multiplication can become scalar multiplication:

Ax = Ax
A?x = A(Ax) = Adx = Mx = \%x

Afx = A (Ak’lx) = ... = \x.

Will see how to use these ideas to understand dynamics even for vectors that aren’t eigenvec-
tors.

Finding Eigenvalues and Eigenvectors

A is an eigenvalue of A if Ax = \x (= A\Ix)

0=XMx—Ax= (A —A)x



pause

So, A is an eigenvalue of A <= det(A —A) =0.

If A is a square n X n matrix, the equation det(A — A) = 0 is called the characteristic
equation of A, and the n th-degree monic polynomial p(A) = det(A — A) is called the
characteristic polynomial of A.

Eigenspaces and Eigensystems

The eigenspace corresponding to eigenvalue X is the subspace N(AI — A) of R™ (or C").
We write £,(A) = N(AI — A).

Note: 0 is in every eigenspace, but it is not an eigenvector.

The eigensystem of the matrix A is a list of all the eigenvalues of A and, for each eigenvalue
A, a complete description of its eigenspace — usually a basis.

Eigensystem Algorithm:
Given n X n matrix A, to find an eigensystem for A :

(1) Find the eigenvalues of A.

(2) For each scalar A in (1), use the null space algorithm to find a basis of the eigenspace
N(AI - A).



A reminder: the Null Space algorithm

Given an m X n matrix A.

1. Compute the reduced row echelon form R of A.

2. Use R to find the general solution to the homogeneous system Ax = 0.

3. Write the general solution x = (z, %y, ..., ,,) to the homogeneous system in the form

X =T; W + X, Wy + -+ T Wp p

where x; ,x, ,...,x, are the free variables.
1 2 n—r

4. List the vectors wy, wy,...,w, .. These form a basis of N(A).

Example of the Null Space algorithm

Find a basis for the null space of the matrix

1 01 2

1 2 0 1

A= 3 2 2 5

3 4 1 4

The reduced row echelon form of A is

1 0 1 2
101 —1/2 —1/2
R= 00 0 0
00 0 0

which becomes, in vector notation,



Ty | 1/2 1/2
o e T I
Ty 1
Example
. . . 7 4
Find an eigensystem for the matrix A = 3 6
A—T —4
O—det(AI—A)—det[ _3 )\—6]

=A=T)(A=6)—(=3)(—4)
= A2 13X\ +42—-12

= A2 - 131+ 30

= (A—3)(A—10).

Figenvalues are A = 3 and A = 10.

For A = 3, we have

7-3 4 447 B (11
A_gl_[ 3 3—3}_[3 3} By (-3/4) [0 0]

Thus, a basis of £5(A) is {(—1,1)}.

Similarly, for A = 10, the basis of £,,(A) is {(4/3,1)}



Two examples with repeated eigenvalues

What happens when an eigenvalue is repeated?

Example: find the eigenspace for eigenvalue A = 2 of these two matrices:

2 1 2 2 1 1
(a)[Ol—Q} (b)[011]
00 2 00 2

Both matrices have eigenvalues A = 1,2, 2, but their eigenspaces for A = 2 are different:

After row reducing the first matrix, we get

A basis for £,(A4) is {(1,0,0),(0,—2,1)}.
Dimension of £,(A) = 2.



Only free variable is z;, so

Ty Ty 1
Ty | =1 0 | =2, 0
Tg 0 0

A basis for £,5(A) is {(1,0,0)}. Dimension of £4(A) = 1.

Eigenvalue Muiltiplicity

The algebraic multiplicity of ) is the multiplicity of A as a root of the characteristic equation.
The geometric multiplicity of \ is the dimension of the space £,(A) = N (A — A).

The eigenvalue A of A is said to be simple if its algebraic multiplicity is 1 , that is, the number
of times it occurs as a root of the characteristic equation is 1 . Otherwise, the eigenvalue is
said to be repeated.

For an n x n matrix A, the sum of the algebraic multiplicities of all the eigenvalues of A is
n.

(In other words, there are n eigenvalues, counting algebraic multiplicities and complex num-
bers).

The geometric multiplicity of an eigenvalue is always less than or equal to its algebraic multi-
plicity.

Defective Matrices

A matrix is defective if one of its eigenvalues has geometric multiplicity less than its algebraic
multiplicity.

This means that the sum of the geometric multiplicities of all the eigenvalues is less than n.



Similarity and Diagonalization

Functions of Diagonal Matrices

It’s easy to find functions of matrices if the matrix is diagonal.

A 00
D:diag{kl,)\Q,)\s} - 0 )\2 0
0 0 A

DF = diag {\F, N5, ... AF}

f(D) = diag{f (A1), f(A2),s f (A0}

Similar Matrices

A matrix A is said to be similar to matrix B if there exists an invertible matrix P such that

P'AP = B.

P is called a similarity transformation matrix.

If A is similar to M, say P~1AP = M. Then:

(1) For every polynomial g(x),

(2) The matrices A and M have the same eigenvalues.

So in particular,

Ak = ppDkp-1



Diagonalization

To diagonalize an n x n matrix A, we just need to find n independent eigenvectors and put
them into the columns of a matrix P. Then P~'AP = D

Example
2 1 2

Find f(A)for A= | 0 1 —2 ] with f(z) = sin (5x)
00 2

From before, the basis vectors for the eigenspace of A = 2 are {(1,0,0),(0,—2,1)}
The basis for the eigenspace of A =11is {(—1,1,0)}

1 0 —1
P — [V17V2,V3] — 0 _2 1 .

11 2
Plzlo 0 1]
01 2
2 00
PtAP=|10 2 0| =D
0 01




(TN 1 (T
5111(2A>—P sm<2D)P
10 —17 [sin(2Z) 0 0 11 2
=0 -2 1 0 sin(Qg) 0 0 0 1
L 0 1 ] 0 0 sin(lg) 01 2
ro —1 —2 7
=10 1 2
0 0 0

When are matrices diagonalizable?

The n X n matrix A is diagonalizable if and only if there exists a linearly independent set of
eigenvectors vy, Vs, ..., v, of A ... in which case P = [v{,V,,...,V,] is a diagonalizing matrix

for A.

If the n x n matrix A has n distinct eigenvalues, then A is diagonalizable.

Caution: Just because the n x n matrix A has fewer than n distinct eigenvalues, you may not
conclude that it is not diagonalizable.

Application to Discrete Dynamical Systems

Diagonalizable Transition Matrices

Suppose you have the discrete dynamical system

B+ — fgx(®)

Assume A is diagonalizable, then we can write complete, linearly independent eigenvectors
Vi,Vg,...,V,, with eigenvalues A;, Ay, ..., A,,.

Suppose the eigenvalues are ordered, so that [A\;| > Ay > - > |A,|.



Spectral Radius and Dominant Eigenvalue

x®) = e MNov ) 4 e \bvy + -+ e My,

The spectral radius p(A) of a matrix A with eigenvalues Ay, Ay, ..., A, is

p(A> = max{])\1| ) ‘)\2’ PR |An’} .

If |IA\i] = p(A) and A, is the only eigenvalue with this property, then )\, is the dominant
eigenvalue of A.

Implications of the Spectral Radius

For n x n transition matrix A, initial state vector x(%):
(1) If p(A) < 1, then lim, ,  A*x© =o0.
(2) If p(A) =1, then the sequence of norms {HX(k)H}Zio is bounded.

(3) If p(A) =1 and X\ = 1 is the dominant eigenvalue of A, then lim,_,  x*

of & (A) — either an eigenvector or 0.

is an element
(4) If p(A) > 1, then for some choices of x¥) we have lim,_,_ |x| = oo

Example

You have too many frogs.

There is a species of bird that eats frogs. (Yay!) Can these help you with your frog problem?

Let F}, and B, be the number of frogs and birds at year k.

Bk+1 == OGBk + O4Fk’
Fk+1 = _TBk + 14Fk7

where 7 is the rate at which the birds eat the frogs. (Suppose it’s around 0.35).
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Is it a good idea to introduce these birds?

Let the population vector in the k th year be x*) = (B, F})
By, ]l [ 06 0471 B,
Foy |~ | =035 14 || F,

Find eigenvalues and eigenvectors of the transition matrix.

import numpy as np

A = np.array([[0.6, 0.4], [-0.35, 1.4]1])

eigvals, eigvecs = np.linalg.eig(A)

eigvals_sorted = np.sort(eigvals) [::-1]

eigvecs_sorted = eigvecs[:, np.argsort(eigvals) [::-1]]
print('Eigenvalues: ' + str(eigvals_sorted))

print ('Eigenvectors: '+ str(eigvecs_sorted))

Eigenvalues: [1.14142136 0.85857864]
Eigenvectors: [[-0.59421716 -0.83980458]
[-0.80430465 -0.54288882]]

Check: use Sympy to diagonalize the matrix.
import sympy as sp
#| echo: true

Asym = sp.Matrix(A)
P,D = Asym.diagonalize()

print("D : {}".format(D))
print("P : {}".format(P))

P*D*P.inv ()

D : Matrix([[0.858578643762691, 0], [0, 1.14142135623731]1])
P : Matrix([[0.839804577036026, 0.635068381284203], [0.542888821389189, 0.859598960745815]])
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0.6 04
—0.35 14

x0 = np.array([100, 10000])

def print_iterations(x0, A, nl1=10, n2=1):
x = x0
for i in range(nl):
for j in range(n2):
x =AQx
print (x)

print_iterations(x0, A)

[ 4060. 13965.]

[ 8022. 18130.]

[12065.2 22574.3]

[16268.84 27381.2 ]

[20713.784 32639.586]
[25484.1048 38445.596 ]
[30668.70128 44904.39772]
[36362.979856 52132.11136 ]
[42670.6324576 60257.9129544]
[49705.54465632 69426.356776 |

Different starting points...

x0 = eigvecs_sorted[0]*-1000
print_iterations(x0, A)

[692.45212576 967.75040247]

[ 802.57143644 1112.49231944]
[ 926.53978964 1276.58924446]
[1066.55957157 1462.93601587]
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[1225.11014929 1674.81457217]
[1404.99191844 1915.95184879]
[1609.37589058 2190.58541685]
[1841.85970109 2503.53802188]
[2106.5310294 2860.30233525]
[2408.03955174 3267 .13740907]

What if we start with the second eigenvector?

x0 = eigvecs_sorted[1]*-1000
print_iterations(x0, A)

[699.73831812 478.5377227 ]
[611.25807995 425.04440043]
[536.77260814 381.12183262]
[474.51229793 345.70015282]
[422.98743989 317.90090967]
[380.9528278 297.01566957]
[347.37796451 282.48844767]
[321.42215777 273.90153916]
[302.41391033 270.96439961]
[289.83410604 273.50529084]

Looks good so far, doesn’t blow up. But if we continue (only printing results every 10 years
now):

x0 = eigvecs_sorted[1]*-1000
print_iterations(x0, A,nl = 10, n2 = 10)

[289.83410604 273.50529084]
[493.86429346 642.61221892]
[1724.50444871 2328.57998379]
[6445.12974686 8722.60198143]
[24186.97763221 32738.09888286]

[ 90789.4036837 122888.24713326]
[340796.1924577 461285.82916599]
[1279247.72362158 1731530.09096614]
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[4801916.36748821 6499650.17996028]
[18024969.23527191 24397758.22361141]

Even the roundoff errors are starting to make the frog population explode

What about complex eigenvalues?

Let’s repeat the above for a different matrix:
0o 2
-2 0

A = np.array([[0, 2], [-2, 0]11)

eigvals, eigvecs = np.linalg.eig(A)

eigvals_sorted = np.sort(eigvals) [::-1]

eigvecs_sorted = eigvecs[:, np.argsort(eigvals) [::-1]]
print('Eigenvalues: ' + str(eigvals_sorted))
print('Eigenvectors: '+ str(eigvecs_sorted))
print_iterations(np.array([1,2]), A,nl = 10, n2 = 1)

Eigenvalues: [0.+2.j 0.-2.j]

Eigenvectors: [[O. -0.70710678j 0. +0.707106783]
[0.70710678+0. j 0.70710678-0. j 1]

[ 4 -2]

[-4 -8]

[-16 8]

[16 32]

[ 64 -32]

[ -64 -128]

[-256 128]

[256 512]

[1024 -512]

[-1024 -2048]

Let’s plot that...
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import matplotlib.pyplot as plt

def plot_iterations(x0O, A, nl1=10, n2=1):
plt.clf()
x = x0
x_vals = [x]
for i in range(nl):
for j in range(n2):
x=A0x
x_vals.append (x)
x_vals = np.array(x_vals)
plt.plot(x_vals[:,0], x_vals[:,1], 'o-',)
for i, txt in enumerate(range(len(x_vals))):
plt.annotate(txt, (x_vals[i,0]+1, x_vals[i,1]+1))
#plt.plot(x_vals[:,0], x_vals[:,1], 'o-")
plt.xlabel('B")
plt.ylabel('F')
plt.title('Population dynamics: eigenvalues='+str(np.linalg.eig(A)[0]))
plt.show()

plot_iterations(np.array([1,2]), np.array([[0, 2], [-2, 0]1))

Population dynamics: eigenvalues=[0.42.j 0.-2.j]

500 ~

—500 A

—1000 A

—1500 A

—2000 ~

—1000 —-500 0 500 1000
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Your turn

import matplotlib.pyplot as plt
import numpy as np
def plot_iterations(x0, A, n1=10, n2=1):
plt.clfO)
x = x0
x_vals = [x]
for i in range(nl):
for j in range(n2):
x=A0Xx
x_vals.append (x)
x_vals = np.array(x_vals)
plt.plot(x_vals[:,0], x_vals[:,1], 'o-',)
for i, txt in enumerate(range(len(x_vals))):
plt.annotate(txt, (x_vals[i,0]+1, x_vals[i,1]1+1))
#plt.plot(x_vals[:,0], x_vals[:,1], 'o-"')
plt.xlabel('B')
plt.ylabel('F')
plt.title('Population dynamics: eigenvalues='+str(np.linalg.eig(A) [0]))
plt.show()

A = np.array([[0, 2], [-2, 0]1)
plot_iterations(np.array([1,2]), A)
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Another example

Figure 1: Fibonacci Statue

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Fy,=0and F| = 1. For n > 2, the n-th Fibonacci number is

Fn:Fn—1+Fn—2

What is the n-th Fibonacci number? What is F,?

(Treatment from here)

Get this into matrix form.

Let

[ F
we[ ]

Then

_ F,
Tyl = [ F ]

P
Fy o Fi+ Fip L1 ][ Fr
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https://www.math.umd.edu/~immortal/MATH401/book/ch_discrete_dynamical_systems.pdf

forq:oz[?]

To understand the dynamics, we need to diagonalize the matrix.

det(A—NI) =0
|

det[ 1 1_)\]—0

M—-A—1=0

1445

A
2

Eigenvalues (call them phi and psi):

FEigenvectors:

Ak = ppkp—1
11 ok 0 1 [ -y 1
-2 ]S s sl A
A |
:|:¢k+1 ¢k+1]\/5[ o _1}

:1[ —hp* + g pr —
\/5 *Q/)SOMFI + <,D¢k+1 SOkJrl o ¢k+1
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Finally,

[ F :|_Ak 1 [ A A ek HO}_ 1 [ pk — ]
- _wwlﬁrl + 901[)k+1 (pk:Jrl _ warl 1 - (karl _ warl

and so

1, 1 145 (1-v5)
e e ((59) + (57))

But for large k, 1* is very small, so

This is the golden ratio!

Go back to some of the previous examples we’ve used, or that you’ve used in your projects.
Work in pairs to find the eigenvalues and eigenvectors of the transition matrix. What do the
eigenvalues tell you about the dynamics of the system?
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