

Ch5 Lecture 2

Eigenvalues of Symmetric Matrices

Positive Definite Matrices

A matrix A is called **positive definite** if $x^T Ax > 0$ for all nonzero vectors x .

...

A symmetric matrix $K = K^T$ is positive definite if and only if all of its eigenvalues are strictly positive.

...

Proof: If $\mathbf{x} = \mathbf{v} \neq \mathbf{0}$ is an eigenvector with (necessarily real) eigenvalue λ , then

$$0 < \mathbf{v}^T K \mathbf{v} = \mathbf{v}^T (\lambda \mathbf{v}) = \lambda \mathbf{v}^T \mathbf{v} = \lambda \|\mathbf{v}\|^2$$

So $\lambda > 0$

...

Conversely, suppose K has all positive eigenvalues.

Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be the orthonormal eigenvector basis with $K\mathbf{u}_j = \lambda_j \mathbf{u}_j$ with $\lambda_j > 0$.

$$\mathbf{x} = c_1 \mathbf{u}_1 + \dots + c_n \mathbf{u}_n, \quad \text{we obtain} \quad K\mathbf{x} = c_1 \lambda_1 \mathbf{u}_1 + \dots + c_n \lambda_n \mathbf{u}_n$$

...

Therefore,

$$\mathbf{x}^T K \mathbf{x} = (c_1 \mathbf{u}_1^T + \dots + c_n \mathbf{u}_n^T) (c_1 \lambda_1 \mathbf{u}_1 + \dots + c_n \lambda_n \mathbf{u}_n) = \lambda_1 c_1^2 + \dots + \lambda_n c_n^2 > 0$$

Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then

(a) All the eigenvalues of A are real.

...

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

...

(c) There is an orthonormal basis of \mathbb{R}^n consisting of n eigenvectors of A . In particular, all real symmetric matrices are non-defective and real diagonalizable.

Example

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

...

We compute the determinant in the characteristic equation

$$\det(A - \lambda I) = \det \begin{pmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{pmatrix} = (3 - \lambda)^2 - 1 = \lambda^2 - 6\lambda + 8$$

...

$$\lambda^2 - 6\lambda + 8 = (\lambda - 4)(\lambda - 2) = 0$$

...

Eigenvectors:

For the first eigenvalue, the eigenvector equation is

$$(A - 4I)\mathbf{v} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \text{or} \quad \begin{array}{l} -x + y = 0 \\ x - y = 0 \end{array}$$

General solution:

$$x = y = a, \quad \text{so} \quad \mathbf{v} = \begin{pmatrix} a \\ a \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\dots \quad \lambda_1 = 4, \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \lambda_2 = 2, \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

The eigenvectors are orthogonal: $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$

Proof of part (a)

Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then

(a) All the eigenvalues of A are real.

Suppose λ is a complex eigenvalue with complex eigenvector $\mathbf{v} \in \mathbb{C}^n$.

$$(A\mathbf{v}) \cdot \mathbf{v} = (\lambda\mathbf{v}) \cdot \mathbf{v} = \lambda\|\mathbf{v}\|^2$$

Now, if A is real and symmetric,

$$(A\mathbf{v}) \cdot \mathbf{w} = (\mathbf{v}^T A^T) \mathbf{w} = \mathbf{v} \cdot (A\mathbf{w}) \quad \text{for all } \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$$

Therefore

$$(A\mathbf{v}) \cdot \mathbf{v} = \mathbf{v} \cdot (A\mathbf{v}) = \mathbf{v} \cdot (\lambda\mathbf{v}) = \mathbf{v}^T \bar{\lambda} \mathbf{v} = \bar{\lambda} \|\mathbf{v}\|^2$$

$$\Rightarrow, \lambda \|\mathbf{v}\|^2 = \bar{\lambda} \|\mathbf{v}\|^2 \Rightarrow \lambda = \bar{\lambda}, \text{ so } \lambda \text{ is real.}$$

Proof of part (b)

Part b: Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Suppose $A\mathbf{v} = \lambda\mathbf{v}$, $A\mathbf{w} = \mu\mathbf{w}$, where $\lambda \neq \mu$ are distinct real eigenvalues.

...

$$\lambda\mathbf{v} \cdot \mathbf{w} = (A\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (A\mathbf{w}) = \mathbf{v} \cdot (\mu\mathbf{w}) = \mu\mathbf{v} \cdot \mathbf{w}, \quad \text{and hence} \quad (\lambda - \mu)\mathbf{v} \cdot \mathbf{w} = 0.$$

...

Since $\lambda \neq \mu$, this implies that $\mathbf{v} \cdot \mathbf{w} = 0$, so the eigenvectors \mathbf{v}, \mathbf{w} are orthogonal.

Proof of part (c)

Part c: There is an orthonormal basis of \mathbb{R}^n consisting of n eigenvectors of A .

...

If the eigenvalues are distinct, then the eigenvectors are orthogonal by part (b).

...

If the eigenvalues are repeated, then we can use the Gram-Schmidt process to orthogonalize the eigenvectors.

Diagonalization of Symmetric Matrices

Diagonalizability of Symmetric Matrices: the Spectral Theorem

- Every real, symmetric matrix admits an eigenvector basis, and hence is diagonalizable.
- Moreover, since we can choose eigenvectors that form an orthonormal basis, the diagonalizing matrix takes a particularly simple form.
- Recall that an $n \times n$ matrix Q is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n .

...

Writing our diagonalization from the previous lecture, specifically for the case of a real symmetric matrix A :

If $A = A^T$ is a real symmetric $n \times n$ matrix, then there exists an orthogonal matrix Q and a real diagonal matrix Λ such that

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^T$$

The eigenvalues of A appear on the diagonal of Λ , while the columns of Q are the corresponding orthonormal eigenvectors.

One example of a useful symmetric matrix: Quadratic Forms

A **quadratic form** is a homogeneous polynomial of degree 2 in n variables x_1, \dots, x_n . For example, in x, y, z : $Q(x, y, z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fzx$.

...

Every quadratic form can be written in matrix form as $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

...

Example:

$$Q(x, y, z) = x^2 + 2y^2 + z^2 + 2xy + yz + 3xz.$$

...

$$\begin{aligned} x(x + 2y + 3z) + y(2y + z) + z^2 &= \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} x + 2y + 3z \\ 2y + z \\ z \end{bmatrix} \\ &= \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{x}^T A \mathbf{x}, \end{aligned}$$

Now, if we have a quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, we always write this in terms of an equivalent symmetric matrix B as $Q(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$ where $B = \frac{1}{2}(A + A^T)$.

(See Exercise 2.4.34 in your textbook.)

So in this case, we can write $Q(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$ where

$$B = \frac{1}{2} \begin{bmatrix} 2 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

Check:

```

import sympy as sp
B = sp.Matrix([[2,2,3],[2,4,1],[3,1,2]])/2
x = sp.Matrix(sp.symbols(['x','y','z']))
(x.T*B*x).expand()

```

$$[x^2 + 2xy + 3xz + 2y^2 + yz + z^2]$$

Yes, this is the same as the original quadratic form.

Diagonalizing Quadratic Forms

Symmetric matrices are diagonalizable \Rightarrow we can always find a basis in which the quadratic form takes a particularly simple form. Just diagonalize:

...

$Q(\mathbf{x}) = \mathbf{x}^T B \mathbf{x} = \mathbf{x}^T P D P^T \mathbf{x}$ where P is the matrix of eigenvectors of B and D is the diagonal matrix of eigenvalues of B .

...

Then if we define new variables $\mathbf{y} = P^T \mathbf{x}$, we have $Q(\mathbf{x}) = \mathbf{y}^T D \mathbf{y}$

...

which just becomes a sum of squares:

$$q(\mathbf{x}) = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$$

Example:

Suppose we have the quadratic form $3x^2 + 2xy + 3y^2$. We can write this in matrix form as $Q(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$ where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and

$$B = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

...

We diagonalize B :

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = A = PDP^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

...

Now, if we define $\mathbf{y} = P^T \mathbf{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} x_1 + x_2 \\ -x_1 + x_2 \end{pmatrix}$, we have $Q(\mathbf{x}) = \mathbf{y}^T D \mathbf{y}$, or

$$q(\mathbf{x}) = 3x_1^2 + 2x_1x_2 + 3x_2^2 = 4y_1^2 + 2y_2^2$$

The numbers aren't always clean, though!

```
Q, Lambda = B.diagonalize()
```

```
Q
```

$$\begin{bmatrix} -13248 \cdot (1+\sqrt{3}i) \cdot (53+9\sqrt{1167}i)^{\frac{2}{3}} - \sqrt[3]{53+9\sqrt{1167}i} \cdot (184 + (-16+(1+\sqrt{3}i)\sqrt[3]{53+9\sqrt{1167}i}) \cdot (1+\sqrt{3}i) \sqrt[3]{53+9\sqrt{1167}i})^2 + 72(1+\sqrt{3}i)^2 \cdot (11-(1+\sqrt{3}i)^2) \\ 792(1+\sqrt{3}i)^2 \cdot (53+9\sqrt{1167}i) \\ 28(-22+(1+\sqrt{3}i)\sqrt[3]{53+9\sqrt{1167}i}) \cdot (1+\sqrt{3}i)^2 \cdot (53+9\sqrt{1167}i) + \sqrt[3]{53+9\sqrt{1167}i} \cdot (184 + (-16+(1+\sqrt{3}i)\sqrt[3]{53+9\sqrt{1167}i}) \cdot (1+\sqrt{3}i) \sqrt[3]{53+9\sqrt{1167}i})^2 + 264(1+\sqrt{3}i)^2 \cdot (53+9\sqrt{1167}i) \\ 1 \end{bmatrix}$$

```
Lambda
```

$$\begin{bmatrix} \frac{4}{3} + \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{53}{216} + \frac{\sqrt{1167}i}{24}} + \frac{23}{18\left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{53}{216} + \frac{\sqrt{1167}i}{24}}} & 0 & 0 \\ 0 & \frac{4}{3} + \frac{23}{18\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{53}{216} + \frac{\sqrt{1167}i}{24}}} + \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{53}{216} + \frac{\sqrt{1167}i}{24}} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

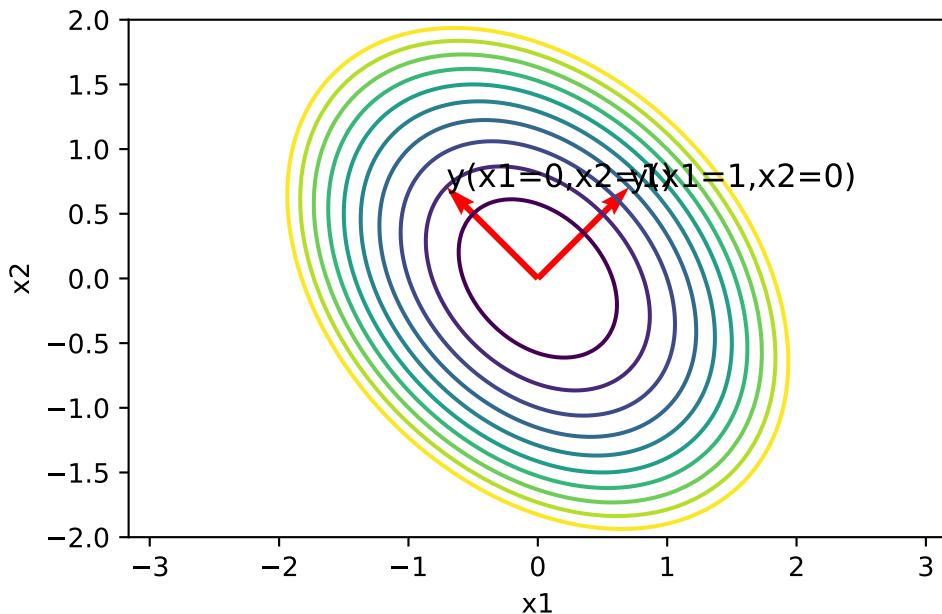
Yuck!

We can visualize the previous example as a *rotation* of the axes (a change of basis) to a new coordinate system where the quadratic form is just a sum of squares.

```

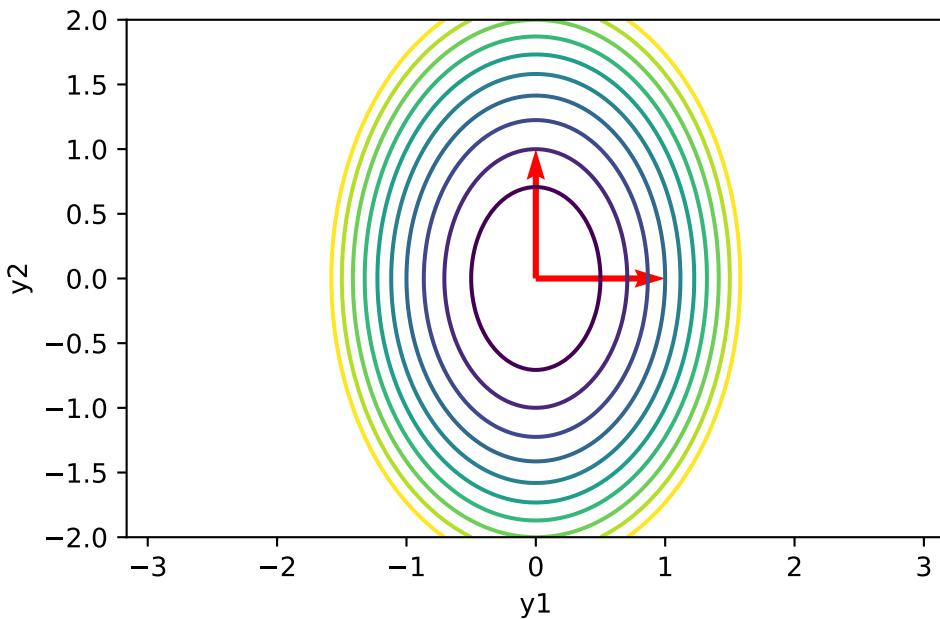
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-2,2,100)
y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 3*X**2+2*X*Y+3*Y**2
plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])
plt.xlabel('x1')
plt.ylabel('x2')
plt.axis('equal')
# plot the vector P.T times (1,0) and (0,1)
P = np.array([[1/np.sqrt(2),1/np.sqrt(2)],[-1/np.sqrt(2),1/np.sqrt(2)]]])
v1 = P.T @ np.array([1,0])
v2 = P.T @ np.array([0,1])
plt.quiver(0,0,v1[0],v1[1],angles='xy',scale_units='xy',scale=1,color='r')
plt.quiver(0,0,v2[0],v2[1],angles='xy',scale_units='xy',scale=1,color='r')
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")
plt.text(v1[0],v1[1],'y(x1=1,x2=0)',fontsize=12)
plt.text(v2[0],v2[1],'y(x1=0,x2=1)',fontsize=12)
plt.show()

```



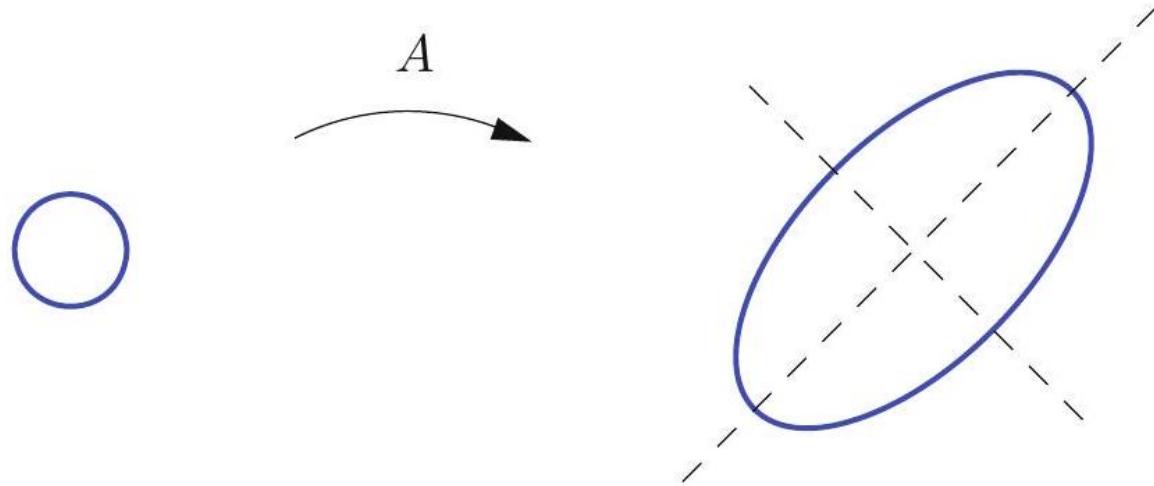
Now make the same plot but in y coordinates:

```
x = np.linspace(-2,2,100)
y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 4*X**2+2*Y**2
plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])
plt.xlabel('y1')
plt.ylabel('y2')
plt.axis('equal')
v1 = P.T @ np.array([1,0])
v2 = P.T @ np.array([0,1])
plt.quiver(0,0,1,0,angles='xy',scale_units='xy',scale=1,color='r')
plt.quiver(0,0,0,1,angles='xy',scale_units='xy',scale=1,color='r')
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")
plt.show()
```



In general, we can think of the diagonalization as a *rotation* of the axes followed by a *scaling* of the axes.

We often visualize this by plotting the effects of the transformations on the unit circle.



The SVD

Singular Values

We've talked a lot about eigenvalues and eigenvectors, but these only make any sense for square matrices. What can we do for a general $m \times n$ matrix A ?

...

It turns out we can learn a lot from the matrix $A^T A$ (or AA^T), which is always square and symmetric.

...

The **singular values** $\sigma_1, \dots, \sigma_r$ of an $m \times n$ matrix A are the positive square roots, $\sigma_i = \sqrt{\lambda_i} > 0$, of the nonzero eigenvalues of the associated “Gram matrix” $K = A^T A$.

...

The corresponding eigenvectors of K are known as the **singular vectors** of A .

...

All of the eigenvalues of K are real and nonnegative – but some may be zero.

...

If $K = A^T A$ has repeated eigenvalues, the singular values of A are repeated with the same multiplicities.

...

The number r of singular values is equal to the rank of the matrices A and K .

Example

Let $A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix}$.

$$K = A^T A = \begin{pmatrix} 3 & 4 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 25 \end{pmatrix}$$

...

This has eigenvalues $\lambda_1 = 40$, $\lambda_2 = 10$, and corresponding eigenvectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

...

Therefore, the singular values of A are $\sigma_1 = \sqrt{40} = 2\sqrt{10}$, $\sigma_2 = \sqrt{10}$.

pause

Singular Values of a Symmetric Matrix

Singular Value Decomposition

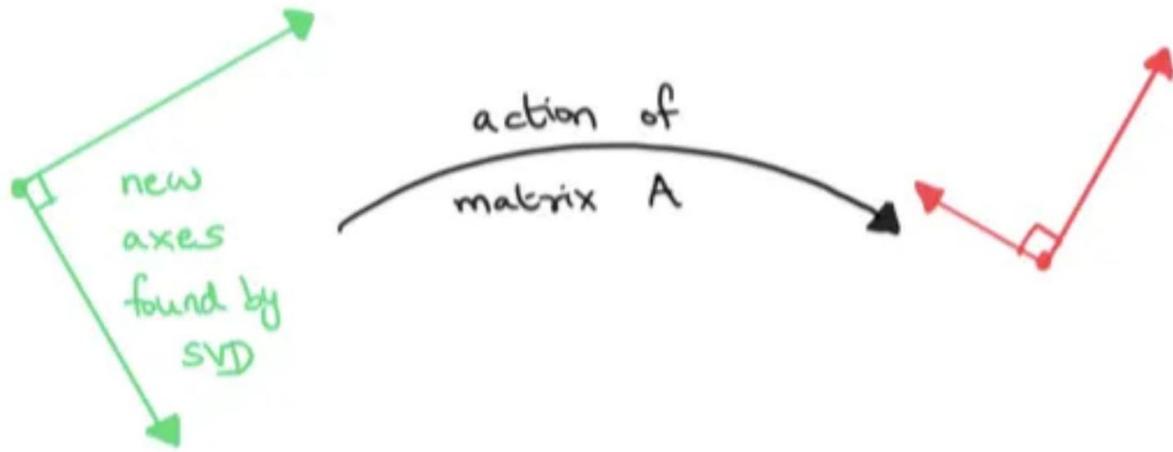
Let A be an $m \times n$ real matrix. Then there exist an $m \times m$ orthogonal matrix U , an $n \times n$ orthogonal matrix V , and an $m \times n$ diagonal matrix Σ with diagonal entries $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0$, with $p = \min\{m, n\}$, such that $U^T A V = \Sigma$. Moreover, the numbers $\sigma_1, \sigma_2, \dots, \sigma_p$ are uniquely determined by A .

Proof:

Geometric interpretation of the SVD

(following closely this [blog post](#))

Goal: to understand the SVD as finding perpendicular axes that remain perpendicular after a transformation.



Take a very simple matrix:

$$A = \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix}$$

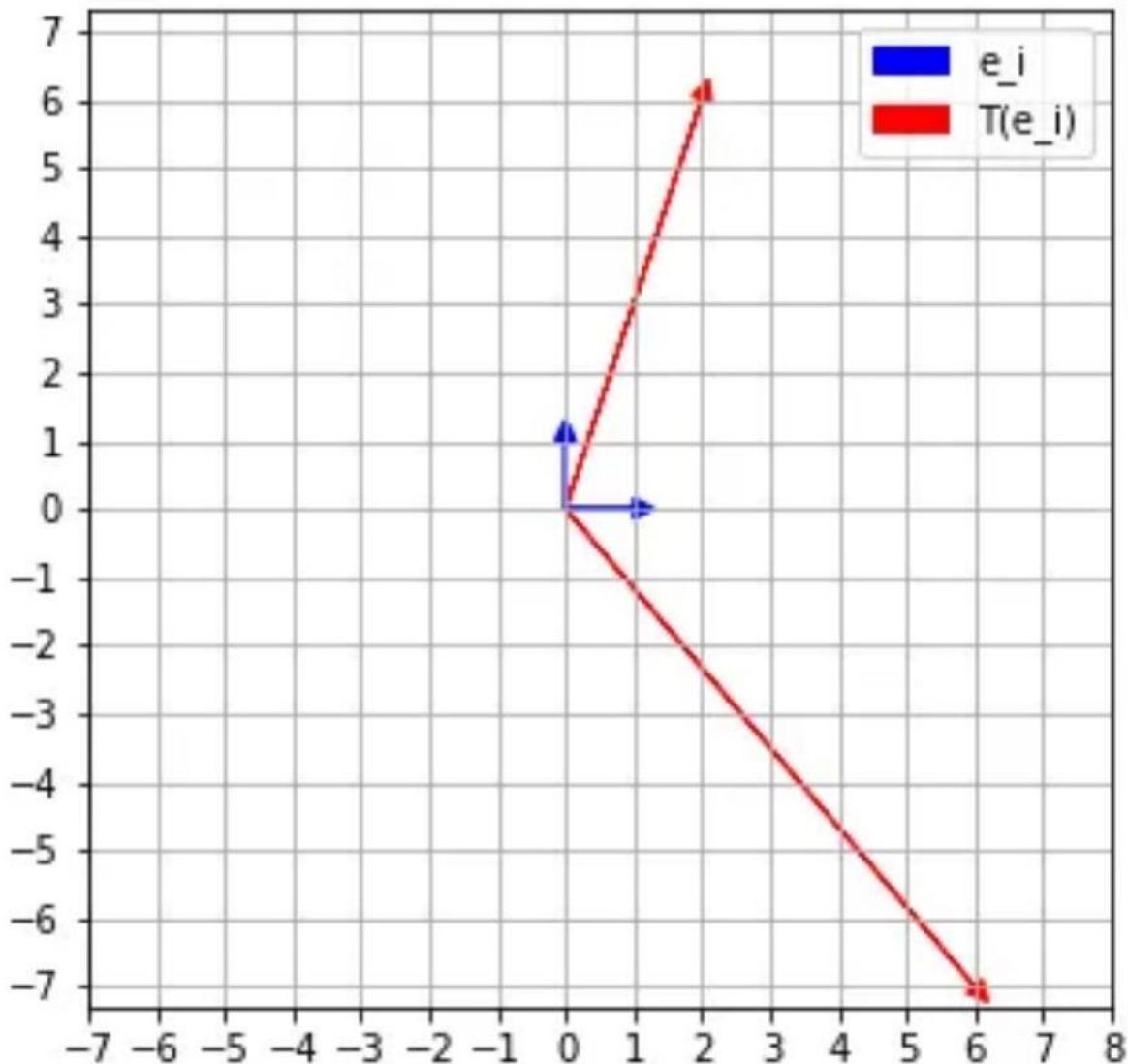
Represents a linear map $T : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ with respect to the standard basis $e_1 = (1, 0)$ and $e_2 = (0, 1)$.

Sends the usual basis elements $e_1 \rightsquigarrow (6, -7)$ and $e_2 \rightsquigarrow (2, 6)$.

We can see what T does to any vector:

$$\begin{aligned}T(2, 3) &= T(2, 0) + T(0, 3) = T(2e_1) + T(3e_2) \\&= 2T(e_1) + 3T(e_2) = 2(6, -7) + 3(2, 6) \\&= (18, 4)\end{aligned}$$

The usual basis elements are no longer perpendicular after the transformation:



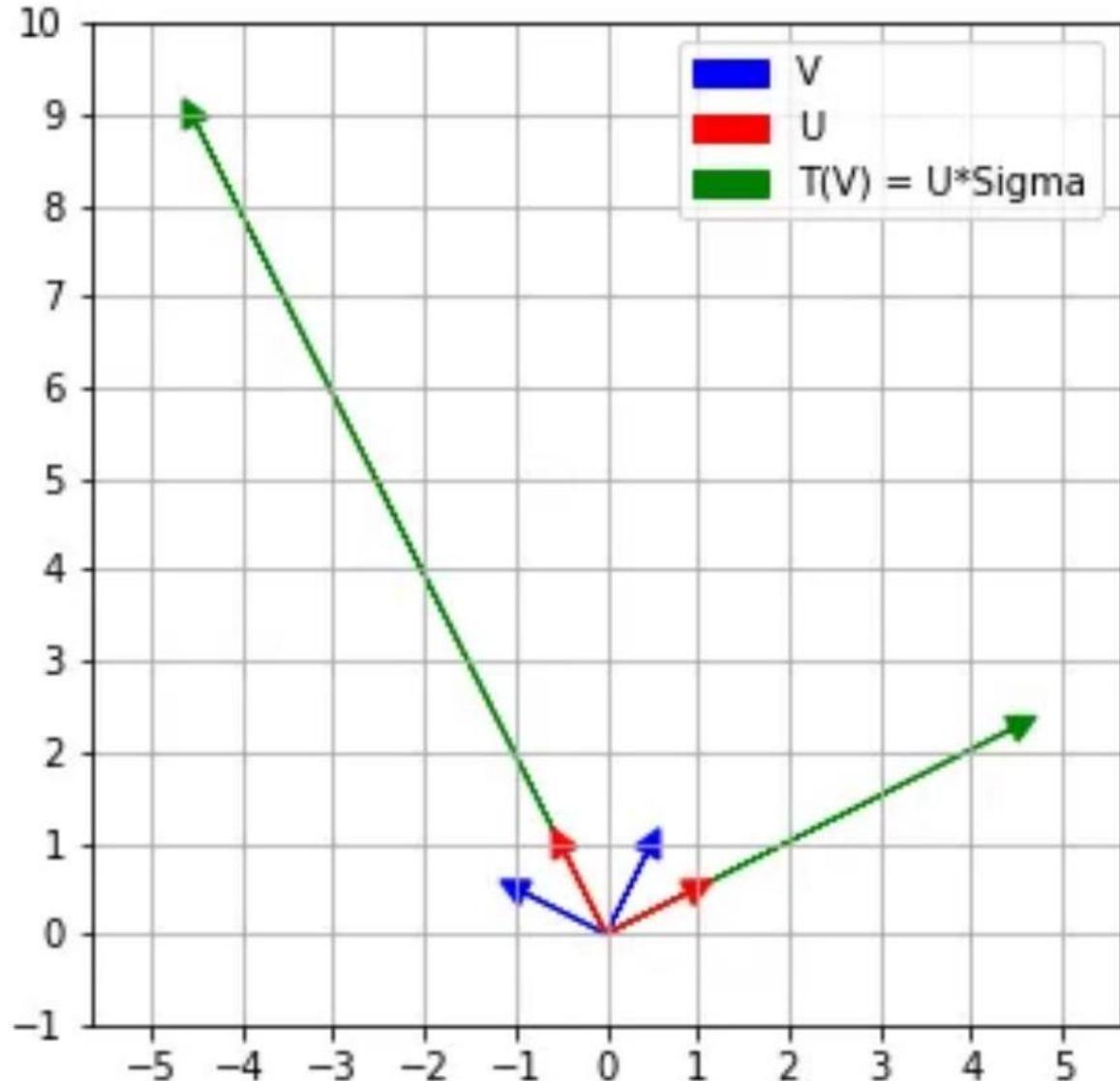
Given a linear map $T: \mathbb{R}^m \rightarrow \mathbb{R}^n$ (which is represented by a $n \times m$ matrix A with respect to the standard basis),

- can we find an orthonormal basis $\{v_1, v_2, \dots, v_m\}$ of \mathbb{R}^m such that
- $\{T(v_1), T(v_2), \dots, T(v_m)\}$ are still mutually perpendicular to each other?

...

This is what the SVD does!

Let the SVD of A be $A = U\Sigma V^T$



How are U and V related?