
Ch5 Lecture 2

Eigenvalues of Symmetric Matrices

Positive Definite Matrices

A matrix 𝐴 is called positive definite if 𝑥𝑇 𝐴𝑥 > 0 for all nonzero vectors 𝑥.

. . .

A symmetric matrix 𝐾 = 𝐾𝑇 is positive definite if and only if all of its eigenvalues are strictly
positive.

. . .

Proof: If x = v ≠ 0 is an eigenvector with (necessarily real) eigenvalue 𝜆, then

0 < v𝑇 𝐾v = v𝑇 (𝜆v) = 𝜆v𝑇 v = 𝜆‖v‖2

So 𝜆 > 0
. . .

Conversely, suppose 𝐾 has all positive eigenvalues.

Let u1, … , u𝑛 be the orthonormal eigenvector basis with 𝐾u𝑗 = 𝜆𝑗u𝑗 with 𝜆𝑗 > 0.

x = 𝑐1u1 + ⋯ + 𝑐𝑛u𝑛, we obtain 𝐾x = 𝑐1𝜆1u1 + ⋯ + 𝑐𝑛𝜆𝑛u𝑛

. . .

Therefore,

x𝑇 𝐾x = (𝑐1u𝑇
1 + ⋯ + 𝑐𝑛u𝑇

𝑛 ) (𝑐1𝜆1u1 + ⋯ + 𝑐𝑛𝜆𝑛u𝑛) = 𝜆1𝑐2
1 + ⋯ + 𝜆𝑛𝑐2

𝑛 > 0
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Let 𝐴 = 𝐴𝑇 be a real symmetric 𝑛 × 𝑛 matrix. Then

(a) All the eigenvalues of 𝐴 are real.

. . .

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

. . .

(c) There is an orthonormal basis of ℝ𝑛 consisting of 𝑛 eigenvectors of 𝐴. In particular, all
real symmetric matrices are non-defective and real diagonalizable.

Example

𝐴 = ( 3 1
1 3 )

. . .

We compute the determinant in the characteristic equation

det(𝐴 − 𝜆I) = det ( 3 − 𝜆 1
1 3 − 𝜆 ) = (3 − 𝜆)2 − 1 = 𝜆2 − 6𝜆 + 8

. . .

𝜆2 − 6𝜆 + 8 = (𝜆 − 4)(𝜆 − 2) = 0

. . .

Eigenvectors:

For the first eigenvalue, the eigenvector equation is

(𝐴 − 4I)v = ( −1 1
1 −1 ) (𝑥

𝑦) = (0
0), or −𝑥 + 𝑦 = 0

𝑥 − 𝑦 = 0
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General solution:
𝑥 = 𝑦 = 𝑎, so v = (𝑎

𝑎) = 𝑎(1
1)

. . .
𝜆1 = 4, v1 = (1

1), 𝜆2 = 2, v2 = (−1
1 )

. . .

The eigenvectors are orthogonal: v1 ⋅ v2 = 0

Proof of part (a)

Let 𝐴 = 𝐴𝑇 be a real symmetric 𝑛 × 𝑛 matrix. Then

(a) All the eigenvalues of 𝐴 are real.

. . .

Suppose 𝜆 is a complex eigenvalue with complex eigenvector v ∈ ℂ𝑛.

(𝐴v) ⋅ v = (𝜆v) ⋅ v = 𝜆‖v‖2

. . .

Now, if 𝐴 is real and symmetric,

(𝐴v) ⋅ w = (v𝑇 𝐴𝑇 ) w = v ⋅ (𝐴w) for all v, w ∈ ℂ𝑛

Therefore

(𝐴v) ⋅ v = v ⋅ (𝐴v) = v ⋅ (𝜆v) = v𝑇 𝜆v = 𝜆̄‖v‖2

. . .

⇒, 𝜆‖v‖2 = 𝜆̄‖v‖2 ⇒ 𝜆 = 𝜆̄, so 𝜆 is real.
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Proof of part (b)

Part b: Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Suppose 𝐴v = 𝜆v, 𝐴w = 𝜇w, where 𝜆 ≠ 𝜇 are distinct real eigenvalues.

. . .

𝜆v ⋅ w = (𝐴v) ⋅ w = v ⋅ (𝐴w) = v ⋅ (𝜇w) = 𝜇v ⋅ w, and hence (𝜆 − 𝜇)v ⋅ w = 0.

. . .

Since 𝜆 ≠ 𝜇, this implies that v ⋅ w = 0, so the eigenvectors v, w are orthogonal.

Proof of part (c)

Part c: There is an orthonormal basis of ℝ𝑛 consisting of 𝑛 eigenvectors of 𝐴.

. . .

If the eigenvalues are distinct, then the eigenvectors are orthogonal by part (b).

. . .

If the eigenvalues are repeated, then we can use the Gram-Schmidt process to orthogonalize
the eigenvectors.

Diagonalization of Symmetric Matrices

Diagonalizability of Symmetric Matrices: the Spectral Theorem

• Every real, symmetric matrix admits an eigenvector basis, and hence is diagonalizable.
• Moreover, since we can choose eigenvectors that form an orthonormal basis, the diago-

nalizing matrix takes a particularly simple form.
• Recall that an 𝑛×𝑛 matrix 𝑄 is orthogonal if and only if its columns form an orthonormal

basis of ℝ𝑛.

. . .

Writing our diagonalization from the previous lecture, specifically for the case of a real sym-
metric matrix 𝐴:

If 𝐴 = 𝐴𝑇 is a real symmetric 𝑛 × 𝑛 matrix, then there exists an orthogonal matrix 𝑄 and a
real diagonal matrix Λ such that

𝐴 = 𝑄Λ𝑄−1 = 𝑄Λ𝑄𝑇
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The eigenvalues of 𝐴 appear on the diagonal of Λ, while the columns of 𝑄 are the corresponding
orthonormal eigenvectors.

One example of a useful symmetric matrix: Quadratic Forms

A quadratic form is a homogeneous polynomial of degree 2 in 𝑛 variables 𝑥1, … , 𝑥𝑛. For
example, in 𝑥, 𝑦, 𝑧: 𝑄(𝑥, 𝑦, 𝑧) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑑𝑥𝑦 + 2𝑒𝑦𝑧 + 2𝑓𝑧𝑥.

. . .

Every quadratic form can be written in matrix form as 𝑄(x) = x𝑇 𝐴x.

. . .

Example:

𝑄(𝑥, 𝑦, 𝑧) = 𝑥2 + 2𝑦2 + 𝑧2 + 2𝑥𝑦 + 𝑦𝑧 + 3𝑥𝑧.

. . .

𝑥(𝑥 + 2𝑦 + 3𝑧) + 𝑦(2𝑦 + 𝑧) + 𝑧2 = [ 𝑥 𝑦 𝑧 ] ⎡⎢
⎣

𝑥 + 2𝑦 + 3𝑧
2𝑦 + 𝑧

𝑧
⎤⎥
⎦

= [ 𝑥 𝑦 𝑧 ] ⎡⎢
⎣

1 2 3
0 2 1
0 0 1

⎤⎥
⎦

⎡⎢
⎣

𝑥
𝑦
𝑧

⎤⎥
⎦

= x𝑇 𝐴x,

Now, if we have a quadratic form 𝑄(x) = x𝑇 𝐴x, we always write this in terms of an equivalent
symmetric matrix 𝐵 as 𝑄(x) = x𝑇 𝐵x where 𝐵 = 1

2(𝐴 + 𝐴𝑇 ).
(See Exercise 2.4.34 in your texbook.)

So in this case, we can write 𝑄(x) = x𝑇 𝐵x where

𝐵 = 1
2

⎡⎢
⎣

2 2 3
2 4 1
3 1 2

⎤⎥
⎦

Check:
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import sympy as sp
B = sp.Matrix([[2,2,3],[2,4,1],[3,1,2]])/2
x = sp.Matrix(sp.symbols(['x','y','z']))
(x.T*B*x).expand()

[𝑥2 + 2𝑥𝑦 + 3𝑥𝑧 + 2𝑦2 + 𝑦𝑧 + 𝑧2]
Yes, this is the same as the original quadratic form.

Diagonalizing Quadratic Forms

Symmetric matrices are diagonalizable ⇒ we can always find a basis in which the quadratic
form takes a particularly simple form. Just diagonalize:

. . .

𝑄(x) = x𝑇 𝐵x = 𝑥𝑇 𝑃𝐷𝑃 𝑇 𝑥 where 𝑃 is the matrix of eigenvectors of 𝐵 and 𝐷 is the diagonal
matrix of eigenvalues of 𝐵.

. . .

Then if we define new variables y = 𝑃 𝑇 x, we have 𝑄(x) = y𝑇 𝐷y

. . .

which just becomes a sum of squares:

𝑞(x) = 𝜆1𝑦2
1 + ⋯ + 𝜆𝑛𝑦2

𝑛

Example:

Suppose we have the quadratic form 3𝑥2 + 2𝑥𝑦 + 3𝑦2. We can write this in matrix form as
𝑄(x) = x𝑇 𝐵x where x = (𝑥1

𝑥2
) and

𝐵 = 1
2 [ 3 1

1 3 ]

. . .

We diagonalize 𝐵:
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( 3 1
1 3 ) = 𝐴 = 𝑃𝐷𝑃 𝑇 = (

1√
2 − 1√

21√
2

1√
2

) ( 4 0
0 2 ) (

1√
2

1√
2

− 1√
2

1√
2

)

. . .

Now, if we define y = 𝑃 𝑇 x = 1√
2( 𝑥1+𝑥2

−𝑥1+𝑥2
), we have 𝑄(x) = y𝑇 𝐷y, or

𝑞(x) = 3𝑥2
1 + 2𝑥1𝑥2 + 3𝑥2

2 = 4𝑦2
1 + 2𝑦2

2

The numbers aren’t always clean, though!

Q,Lambda = B.diagonalize()
Q

⎡
⎢⎢⎢⎢
⎣

−13248⋅(1+
√

3𝑖)(53+9
√

1167𝑖)
2
3 − 3√53+9

√
1167𝑖(184+(−16+(1+

√
3𝑖) 3√53+9

√
1167𝑖)(1+

√
3𝑖) 3√53+9

√
1167𝑖)

2
+72(1+

√
3𝑖)2⋅(11−(1+

√
3𝑖) 3√53+9

√
1167𝑖)(53+9

√
1167𝑖)

792(1+
√

3𝑖)2⋅(53+9
√

1167𝑖)
72(1−

√
3𝑖)3⋅(11+(−1+

√
3𝑖) 3√53+9

√
1167𝑖)(53+9

√
1167𝑖)+(−1+

√
3𝑖) 3√53+9

√
1167𝑖(184+(−16+(1−

√
3𝑖) 3√53+9

√
1167𝑖)(1−

√
3𝑖) 3√53+9

√
1167𝑖)

2
−13248(1−

√
3𝑖)2(53+9

√
1167𝑖)

2
3

792(1−
√

3𝑖)3⋅(53+9
√

1167𝑖)
126

√
1167−289𝑖(53+9

√
1167𝑖)

2
3 −3

√
1167(53+9

√
1167𝑖)

2
3 −742𝑖+352𝑖 3√53+9

√
1167𝑖+60

√
1167 3√53+9

√
1167𝑖

66⋅(9
√

1167−53𝑖)

28(−22+(1+
√

3𝑖) 3√53+9
√

1167𝑖)(1+
√

3𝑖)2⋅(53+9
√

1167𝑖)+ 3√53+9
√

1167𝑖(184+(−16+(1+
√

3𝑖) 3√53+9
√

1167𝑖)(1+
√

3𝑖) 3√53+9
√

1167𝑖)
2
+5152⋅(1+

√
3𝑖)(53+9

√
1167𝑖)

2
3

264(1+
√

3𝑖)2⋅(53+9
√

1167𝑖)
5152⋅(1−

√
3𝑖)(53+9

√
1167𝑖)

2
3 + 3√53+9

√
1167𝑖(184+(−16+(1−

√
3𝑖) 3√53+9

√
1167𝑖)(1−

√
3𝑖) 3√53+9

√
1167𝑖)

2
+28(−22+(1−

√
3𝑖) 3√53+9

√
1167𝑖)(1−

√
3𝑖)2⋅(53+9

√
1167𝑖)

264(1−
√

3𝑖)2⋅(53+9
√

1167𝑖)
18

√
1167−2222𝑖 3√53+9

√
1167𝑖−145𝑖(53+9

√
1167𝑖)

2
3 −106𝑖+18

√
1167 3√53+9

√
1167𝑖+9

√
1167(53+9

√
1167𝑖)

2
3

66⋅(9
√

1167−53𝑖)
1 1 1

⎤
⎥⎥⎥⎥
⎦

Lambda

⎡
⎢
⎢
⎢
⎢
⎣

4
3 + (−1

2 −
√

3𝑖
2 ) 3√ 53

216 +
√

1167𝑖
24 + 23

18(− 1
2 −

√
3𝑖
2 ) 3√ 53

216 +
√

1167𝑖
24

0 0

0 4
3 + 23

18(− 1
2 +

√
3𝑖
2 ) 3√ 53

216 +
√

1167𝑖
24

+ (−1
2 +

√
3𝑖
2 ) 3√ 53

216 +
√

1167𝑖
24 0

0 0 4
3 + 23

18 3√ 53
216 +

√
1167𝑖
24

+ 3√ 53
216 +

√
1167𝑖
24

⎤
⎥
⎥
⎥
⎥
⎦

Yuck!

We can visualize the previous example as a rotation of the axes (a change of basis) to a new
coordinate system where the quadratic form is just a sum of squares.
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import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-2,2,100)
y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 3*X**2+2*X*Y+3*Y**2
plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])
plt.xlabel('x1')
plt.ylabel('x2')
plt.axis('equal')
# plot the vector P.T times (1,0) and (0,1)
P = np.array([[1/np.sqrt(2),1/np.sqrt(2)],[-1/np.sqrt(2),1/np.sqrt(2)]])
v1 = P.T @ np.array([1,0])
v2 = P.T @ np.array([0,1])
plt.quiver(0,0,v1[0],v1[1],angles='xy',scale_units='xy',scale=1,color='r')
plt.quiver(0,0,v2[0],v2[1],angles='xy',scale_units='xy',scale=1,color='r')
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")
plt.text(v1[0],v1[1],'y(x1=1,x2=0)',fontsize=12)
plt.text(v2[0],v2[1],'y(x1=0,x2=1)',fontsize=12)
plt.show()

3 2 1 0 1 2 3
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x2

y(x1=1,x2=0)y(x1=0,x2=1)
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Now make the same plot but in y coordinates:

x = np.linspace(-2,2,100)
y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 4*X**2+2*Y**2
plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])
plt.xlabel('y1')
plt.ylabel('y2')
plt.axis('equal')
v1 = P.T @ np.array([1,0])
v2 = P.T @ np.array([0,1])
plt.quiver(0,0,1,0,angles='xy',scale_units='xy',scale=1,color='r')
plt.quiver(0,0,0,1,angles='xy',scale_units='xy',scale=1,color='r')
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")
plt.show()

3 2 1 0 1 2 3
y1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y2

In general, we can think of the diagonalization as a rotation of the axes followed by a scaling
of the axes.
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We often visualize this by plotting the effects of the transformations on the unit circle.

The SVD

Singular Values

We’ve talked a lot about eigenvalues and eigenvectors, but these only make any sense for square
matrices. What can we do for a general 𝑚 × 𝑛 matrix 𝐴?

. . .

It turns out we can learn a lot from the matrix 𝐴𝑇 𝐴 (or 𝐴𝐴𝑇 ), which is always square and
symmetric.

. . .

The singular values 𝜎1, … , 𝜎𝑟 of an 𝑚 × 𝑛 matrix 𝐴 are the positive square roots, 𝜎𝑖 =
√𝜆𝑖 > 0, of the nonzero eigenvalues of the associated “Gram matrix” 𝐾 = 𝐴𝑇 𝐴.

. . .

The corresponding eigenvectors of 𝐾 are known as the singular vectors of 𝐴.

. . .

All of the eigenvalues of 𝐾 are real and nonnegative – but some may be zero.

. . .

If 𝐾 = 𝐴𝑇 𝐴 has repeated eigenvalues, the singular values of 𝐴 are repeated with the same
multiplicities.
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. . .

The number 𝑟 of singular values is equal to the rank of the matrices 𝐴 and 𝐾.

Example

Let 𝐴 = ( 3 5
4 0 ).

𝐾 = 𝐴𝑇 𝐴 = ( 3 4
5 0 ) ( 3 5

4 0 ) = ( 25 15
15 25 )

. . .

This has eigenvalues 𝜆1 = 40, 𝜆2 = 10, and corresponding eigenvectors v1 = (1
1), v2 = ( 1

−1).

. . .

Therefore, the singular values of 𝐴 are 𝜎1 =
√

40 = 2
√

10, 𝜎2 =
√

10.

pause

Singular Values of a Symmetric Matrix

Singular Value Decomposition

Let 𝐴 be an 𝑚 × 𝑛 real matrix. Then there exist an 𝑚 × 𝑚 orthogonal matrix 𝑈 , an 𝑛 × 𝑛
orthogonal matrix 𝑉 , and an 𝑚 × 𝑛 diagonal matrix Σ with diagonal entries 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥
𝜎𝑝 ≥ 0, with 𝑝 = min{𝑚, 𝑛}, such that 𝑈𝑇 𝐴𝑉 = Σ. Moreover, the numbers 𝜎1, 𝜎2, … , 𝜎𝑝 are
uniquely determined by 𝐴.

Proof:
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Geometric interpretation of the SVD

(following closely this blog post)

Goal: to understand the SVD as finding perpendicular axes that remain perpendicular after
a transformation.

Take a very simple matrix:

𝐴 = ( 6 2
−7 6 )

. . .

Represents a linear map T ∶ R2 → R2 with respect to the standard basis 𝑒1 = (1, 0) and
𝑒2 = (0, 1).
. . .

Sends the usual basis elements 𝑒1 ⇝ (6, −7) and 𝑒2 ⇝ (2, 6).
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We can see what T does to any vector:

𝑇 (2, 3) = 𝑇 (2, 0) + 𝑇 (0, 3) = 𝑇 (2𝑒1) + 𝑇 (3𝑒2)
= 2𝑇 (𝑒1) + 3𝑇 (𝑒2) = 2(6, −7) + 3(2, 6)
= (18, 4)

The usual basis elements are no longer perpendicular after the transformation:
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Given a linear map T:Rm → 𝑅𝑛 (which is represented by a 𝑛 × 𝑚 matrix 𝐴 with respect to
the standard basis),

• can we find an orthonormal basis {𝑣−1, 𝑣−2, … , 𝑣−𝑚} of 𝑅𝑚 such that
• {𝑇 (𝑣−1) , 𝑇 (𝑣−2) , … T (v−m)} are still mutually perpendicular to each other?

. . .
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This is what the SVD does!

Let the SVD of 𝐴 be 𝐴 = 𝑈Σ𝑉 𝑇

. . .

How are 𝑈 and 𝑉 related?
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