Chb Lecture 2

Eigenvalues of Symmetric Matrices

Positive Definite Matrices

A matrix A is called positive definite if 27 Az > 0 for all nonzero vectors z.

A symmetric matrix K = K7 is positive definite if and only if all of its eigenvalues are strictly
positive.

Proof: If x = v # 0 is an eigenvector with (necessarily real) eigenvalue A, then
0 <vIKv=vI(\v) = Avlv = \|v|?

SoA>0

Conversely, suppose K has all positive eigenvalues.

Let uy, ..., u, be the orthonormal eigenvector basis with Ku; = A;u; with A; > 0.

x=cu +-+c,u,, Wweobtain Kx=cA\u +-+c,A\u,

Therefore,

xTKx = (cqul + - +c,ul) (e juy + -+ e, \u,) = A\c? + -+ X,c2 >0



Let A = AT be a real symmetric n x n matrix. Then

(a) All the eigenvalues of A are real.
(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of R™ consisting of n eigenvectors of A. In particular, all
real symmetric matrices are non-defective and real diagonalizable.

Example

We compute the determinant in the characteristic equation

3—A 1

det(A—AI)zdet( 1 3

):(3—>\)2—1:)\2—6)\+8

A2 —6A+8=(A—4)(A—2)=0

Eigenvectors:

For the first eigenvalue, the eigenvector equation is

wa= (1 )-0) « n



General solution:

The eigenvectors are orthogonal: v, - vy =0

Proof of part (a)

Let A = AT be a real symmetric n x n matrix. Then

(a) All the eigenvalues of A are real.

Suppose A is a complex eigenvalue with complex eigenvector v € C".

(Av) - v = (V) -v=)\v|?

Now, if A is real and symmetric,

(Av) - w=(VTAT)w=v-(Aw) forall v,wecC"

Therefore

(Av)-v=v-(Av) =v-(\v) = vIdv = \|v|?

=, AVv|? = A|v|? = A= ), s0 X is real.



Proof of part (b)

Part b: Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Suppose Av = \v, Aw = uw, where \ # pu are distinct real eigenvalues.

Av-w=(Av) - w=v-(Aw)=v. (uw) =pv-w, and hence (A—p)v-w=0.

Since A\ # u, this implies that v - w = 0, so the eigenvectors v, w are orthogonal.

Proof of part (c)

Part c¢: There is an orthonormal basis of R™ consisting of n eigenvectors of A.

If the eigenvalues are distinct, then the eigenvectors are orthogonal by part (b).

If the eigenvalues are repeated, then we can use the Gram-Schmidt process to orthogonalize
the eigenvectors.

Diagonalization of Symmetric Matrices

Diagonalizability of Symmetric Matrices: the Spectral Theorem

o Every real, symmetric matrix admits an eigenvector basis, and hence is diagonalizable.

e Moreover, since we can choose eigenvectors that form an orthonormal basis, the diago-
nalizing matrix takes a particularly simple form.

¢ Recall that an n xn matrix () is orthogonal if and only if its columns form an orthonormal
basis of R™.

Writing our diagonalization from the previous lecture, specifically for the case of a real sym-
metric matrix A:

If A= AT is a real symmetric n x n matrix, then there exists an orthogonal matrix @ and a
real diagonal matrix A such that

A=QAQ™" =QAQT



The eigenvalues of A appear on the diagonal of A, while the columns of () are the corresponding
orthonormal eigenvectors.

One example of a useful symmetric matrix: Quadratic Forms

A quadratic form is a homogeneous polynomial of degree 2 in n variables z,...,z,. For

example, in z,y, 2: Q(x,y,2) = ax? + by? + c2? + 2dxy + 2eyz + 2f 2.

ne

Every quadratic form can be written in matrix form as Q(x) = xT Ax.

Example:
Q($,y,2§) :$2+2y2+22+2:€y+y2+31’z.
[ 42y + 3z
v(x+2y+32)+yRy+z2)+22=z y z] 2y + z
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Now, if we have a quadratic form Q(x) = xT Ax, we always write this in terms of an equivalent
symmetric matrix B as Q(x) = x* Bx where B = (A + AT).

(See Exercise 2.4.34 in your texbook.)

So in this case, we can write Q(x) = xT Bx where

B=-

W NN
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|

Check:



import sympy as sp

B = sp.Matrix([[2,2,3],[2,4,1],[3,1,2]1])/2
x = sp.Matrix(sp.symbols(['x','y','z']))
(x.T#*B*x) .expand ()

(2% + 22y + 32 + 2y° + yz + 27

Yes, this is the same as the original quadratic form.

Diagonalizing Quadratic Forms

Symmetric matrices are diagonalizable = we can always find a basis in which the quadratic
form takes a particularly simple form. Just diagonalize:

Q(x) = xI'Bx = 2T PDPTz where P is the matrix of eigenvectors of B and D is the diagonal
matrix of eigenvalues of B.

Then if we define new variables y = PTx, we have Q(x) = y! Dy

which just becomes a sum of squares:

q(x) = \yi + -+ M\

Example:

Suppose we have the quadratic form 3z? + 2zy + 3y?. We can write this in matrix form as
Q(x) = xT Bx where x = (2) and

We diagonalize B:



N
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W =

Jamrr= ()

Now, if we define y = PTx = %(i}jﬁé), we have Q(x) =y Dy, or

S
S-Sl
s
SN—

q(x) = 32% 4 22,2, + 323 = 4y} + 243

The numbers aren’t always clean, though!

Q,Lambda = B.diagonalize()
Q

2 . . 2
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264(1+\ﬂ) -(534+9v/11671)
1
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Yuck!

We can visualize the previous example as a rotation of the axes (a change of basis) to a new
coordinate system where the quadratic form is just a sum of squares.



import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-2,2,100)

y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 3*kX*k*%2+2xXxY+3*Y**2

plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])

plt.xlabel('x1")

plt.ylabel('x2"')

plt.axis('equal')

# plot the vector P.T times (1,0) and (0,1)

P = np.array([[1/np.sqrt(2),1/np.sqrt(2)], [-1/np.sqrt(2),1/np.sqrt(2)1]1)
vl = P.T @ np.array([1,0])

v2 = P.T @ np.array([0,1])
plt.quiver(0,0,v1[0],v1[1],angles='xy',scale_units='xy',scale=1,color="'r")
plt.quiver(0,0,v2[0],v2[1],angles="'xy',scale_units='xy',scale=1,color='r")
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")
plt.text(v1[0],v1i[1], 'y(x1=1,x2=0)"',fontsize=12)

plt.text(v2[0],v2[1], 'y(x1=0,x2=1)"',fontsize=12)

plt.show()

2.0

1.5 -
1.0
=1,x2=0)
0.5 A

¥ 0.0
—-0.5
—-1.0

—1.54

_2.0 T T T T T T T



Now make the same plot but in y coordinates:

X = np.linspace(-2,2,100)
y = np.linspace(-2,2,100)
X,Y = np.meshgrid(x,y)
Z = 4xX*x*k2+2%kY*x*x2

plt.contour(X,Y,Z,levels=[1,2,3,4,5,6,7,8,9,10])

plt.xlabel('y1l')

plt.ylabel('y2')

plt.axis('equal')

vl = P.T @ np.array([1,0])

v2 = P.T @ np.array([0,1])
plt.quiver(0,0,1,0,angles="xy"',scale_units='xy',scale=1,color="'r")
plt.quiver(0,0,0,1,angles="xy',scale_units='xy',scale=1,color="'r")
# label the two quivers ("x1=1, x2=0" and "x1=0, x2=1")

plt.show()
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In general, we can think of the diagonalization as a rotation of the axes followed by a scaling
of the axes.



We often visualize this by plotting the effects of the transformations on the unit circle.

A

The SVD

Singular Values
We’ve talked a lot about eigenvalues and eigenvectors, but these only make any sense for square

matrices. What can we do for a general m x n matrix A?

It turns out we can learn a lot from the matrix AT A (or AAT), which is always square and
symmetric.

The singular values o04,...,0, of an m x n matrix A are the positive square roots, o, =
VA; > 0, of the nonzero eigenvalues of the associated “Gram matrix” K = AT A.

The corresponding eigenvectors of K are known as the singular vectors of A.
All of the eigenvalues of K are real and nonnegative — but some may be zero.

If K = AT A has repeated eigenvalues, the singular values of A are repeated with the same
multiplicities.
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The number r of singular values is equal to the rank of the matrices A and K.

Example

3 5
Let A= ( 40 )
3 4 3 5 25 15
_ AT A — _
K_AA_(S 0)(4 0)_(15 25)
This has eigenvalues A; = 40, Ay = 10, and corresponding eigenvectors v, = (}), Vy = (fl)

Therefore, the singular values of A are oy = v/40 = 2v/10,0, = v/10.

pause

Singular Values of a Symmetric Matrix

Singular Value Decomposition

Let A be an m x n real matrix. Then there exist an m X m orthogonal matrix U, an n X n
orthogonal matrix V, and an m x n diagonal matrix ¥ with diagonal entries o > g9 > -+ >

o, > 0, with p = min{m,n}, such that UT AV = X. Moreover, the numbers o, 05, ... , 0, are
uniquely determined by A.

Proof:
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Geometric interpretation of the SVD

(following closely this blog post)

Goal: to understand the SVD as finding perpendicular axes that remain perpendicular after
a transformation.

ogch\w\ oQ-

mv

Take a very simple matrix:

Represents a linear map T : R? — R? with respect to the standard basis e; = (1,0) and
62 - (0, 1)

Sends the usual basis elements e; +» (6,—7) and e, v (2,6).
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https://towardsdatascience.com/svd-a-geometric-view-point-cfc0c689bdc0

We can see what T does to any vector:

T(2,3) =T(2,0) + T(0,3) = T (2¢,) + T (3e,)
= 2T (e,) + 3T (ey) = 2(6,—7) + 3(2,6)
= (18,4)

The usual basis elements are no longer perpendicular after the transformation:

13
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Given a linear map T:Rm — R"™ (which is represented by a n x m matrix A with respect to
the standard basis),

o can we find an orthonormal basis {v_1,v_2,...,v_m} of R™ such that
e {T'(v_1),T(v_2),... T(v_m)} are still mutually perpendicular to each other?
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This is what the SVD does!
Let the SVD of A be A =UXVT

How are U and V related?

15
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