Ch 5 Lecture 3

Intuition about SVD

Thinking again about matrix diagonalization

The same logic, applied to a general matrix
Many parts of this inspired by this

Recap blog post
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https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491

13 12 2
AAT:<187 187>, ATA:(12 13 —2)

2 =2 8

13 12 2
AAT = ( 17 187 ) ATA = ( 12 13 -2 )
8 2 -2 8
eigenvalues: \; = 25,1, =9 eigenvalues: A} = 25,1y =9,A3 =0
eigenvectors eigenvectors
1/V2 1/V/18 2/3
U1-(1?£) U2—<_11//f%> Ulz(l/\@) U2:(—1/\/ﬁ) 03:(_2/3)
0 4/y/18 ~1/3

SVD decomposition of A:

A=USVT = ( i?g 11//\/\%)<

50 0 v2  1/y2 0
> O)(l/m _1/Vis 4/@)

2/3  —2/3 —1/3
Reformulating SVD

SVD as a sum of rank-one matrices

A=oupl + ...+ ou0l

Back to our example
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Can decompose as



i) (s v o)+ 3 (2% ) (v v o)

Uses of SVD

Moore-Penrose pseudoinverse

If we have a linear system

Axr =10

and A is invertible, then we can solve for x:

x=A"1b

If A is not invertible, we can define instead a pseudoinverse

A+

Define A" in order to minimize the least squares error:

|AAY —T

nlly

Then we can estimate x as

Ax =b
x~ Atb



Finding the form of the pseudoinverse

Example
Matrices as data

Example: Height and weight
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Covariance matrix
Covariance:
02, = cov(a,b) = El(a — a)(b— )
02 =var(a) = cov(a,a) = E [(a — a)?]

—2.5
—4.7



Covariance matrix:

El(ry —p) (m — )] E(my — py) (2 — po)] E [(xl — 1) (afp -
_ El(wy = po) (xy — )] El(wg — p) (w3 — )] E [(352 — pa) (2, —
E[(z, =) (@ —p)] E (2, — 1) (25— )] E[(, = ) (w, -
Y =E[(X—-X)(X—X)T]
bo e
Y= (if X is already zero centered)
n
For our dataset,
Samp] ance 7 — ATA 1 [ 5346 73.42
APIC COVATIAREE 9= 1) T 11 | 7342 107.16
AT 29 -15 01 —-1.0 21 —40 —-20 22 0.2 20 15 —-25
| 40 —09 00 —-1.0 3.0 =50 —35 2.6 1.0 3.5 1.0 —4.7
Plotting

The columns of the V matrix:



import numpy as np

import matplotlib.pyplot as plt

data = np.array([[2.9, 4.0], [-1.5, -0.9], [O0.1, O.0], [-1.0, -1.0], [2.1, 3.0], [-4.0, -5.0],
Ud,Sd,Vd=np.linalg.svd(data)

print (Vd)

plt.clf (O

plt.scatter(datal:,0] ,datal:,1])
plt.quiver(0,0,Vd.T[0,0]*Sd[0]/5,Vd.T[1,0]*Sd[0]/5,angles="'xy',scale_units='xy',scale=1, color
plt.quiver(0,0,Vd.T[0,1],Vd.T[1,1],angles="'xy',scale_units='xy',scale=1, color = 'blue')
plt.axis('equal')

plt.show()

[[-0.57294952 -0.81959066]
[ 0.81959066 -0.57294952]]
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Walk through why these vectors are actually the eigenvectors
of the covariance matrix.

The components of the data matrix



#plt.scatter(datal:,0],datal:,1])

plt.clf()

componentl = np.outer(Ud[:,0],Sd[0]*Vd[0])
component2 = np.outer(Ud[:,1],Sd[1]1*Vd[1])
plt.scatter(componenti[:,0],componenti[:,1])
plt.scatter (component2[:,0],component2[:,1])
combined = componentl + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')

# add a legend

plt.legend(["component 1", "component 2", "combined"])
plt.show()
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The columns of the U matrix

plt.scatter(Ud.T[0]*Sd[0],Ud.T[1]*Sd[1])
plt.quiver(0,0,0,1,angles="xy',scale_units='xy',scale=1)
plt.quiver(0,0,1,0,angles="xy',scale_units='xy',scale=1)
plt.axis('equal')

# give x label "column ul" and y label "column u2"
plt.xlabel("column ul")

plt.ylabel("column u2")



plt.show()
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What if we had different orthogonal matrix for V, that
wasn'’t eigenvectors of the covariance matrix?

va=np.array([[1,0],[0,1]1])

ua=np.matmul (data,va)

plt.scatter(ual:,0],ual:,1])

print(np.cov(ua.T))

plt.axis('equal')

# give x label "column ul" and y label "column u2"
plt.xlabel("column ul")

plt.ylabel("column u2")

plt.show()

[[4.86 6.67454545]
[6.67454545 9.74181818]]
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The columns of the U matrix are no longer orthogonal.

The U matrix as a heat plot

# make a heatmap of the Ud matrix

plt.imshow(Ud, cmap='hot', interpolation='nearest')
plt.colorbar()

plt.show()
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