
Ch 5 Lecture 3

Intuition about SVD

Thinking again about matrix diagonalization

Many parts of this inspired by this
blog post

The same logic, applied to a general matrix

Recap

𝐴 = 𝑈𝑆𝑉 𝑇
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eigenvectors of 𝐴𝐴𝑇 𝐴𝑇 𝐴

Example

𝐴 = ( 3 2 2
2 3 −2 )

. . .
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𝐴𝐴𝑇 = ( 17 8
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eigenvalues: 𝜆1 = 25, 𝜆2 = 9
eigenvectors

eigenvalues: 𝜆1 = 25, 𝜆2 = 9, 𝜆3 = 0
eigenvectors
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SVD decomposition of 𝐴:
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Reformulating SVD

SVD as a sum of rank-one matrices

𝐴 = 𝜎𝑙𝑢𝑙𝑣𝑇
𝑙 + … + 𝜎𝑟𝑢𝑟𝑣𝑇

𝑟

Back to our example

𝐴 = ( 3 2 2
2 3 −2 )

. . .

Can decompose as
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. . .

𝐴 = ( 3 2 2
2 3 −2 )

Uses of SVD

Moore-Penrose pseudoinverse

If we have a linear system

𝐴𝑥 = 𝑏

and 𝐴 is invertible, then we can solve for 𝑥:

𝑥 = 𝐴−1𝑏

. . .

If 𝐴 is not invertible, we can define instead a pseudoinverse
𝐴+

. . .

Define 𝐴+ in order to minimize the least squares error:

‖AA+ − In‖2

. . .

Then we can estimate 𝑥 as

𝐴𝑥 = 𝑏
𝑥 ≈ 𝐴+𝑏
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Finding the form of the pseudoinverse

Example

Matrices as data

Example: Height and weight

𝐴𝑇 = [ 2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7 ]

. . .

Covariance matrix

Covariance:

𝜎2
𝑎𝑏 = cov(𝑎, 𝑏) = E[(𝑎 − ̄𝑎)(𝑏 − 𝑏̄)]
𝜎2

𝑎 = var(𝑎) = cov(𝑎, 𝑎) = E [(𝑎 − ̄𝑎)2]

4



. . .

Covariance matrix:

� =
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𝐸 [(𝑥1 − 𝜇1) (𝑥1 − 𝜇1)] 𝐸 [(𝑥1 − 𝜇1) (𝑥2 − 𝜇2)] … 𝐸 [(𝑥1 − 𝜇1) (𝑥𝑝 − 𝜇𝑝)]
𝐸 [(𝑥2 − 𝜇2) (𝑥1 − 𝜇1)] 𝐸 [(𝑥2 − 𝜇2) (𝑥2 − 𝜇2)] … 𝐸 [(𝑥2 − 𝜇2) (𝑥𝑝 − 𝜇𝑝)]
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. . .

Σ = E [(𝑋 − 𝑋̄)(𝑋 − 𝑋̄)T]

. . .
Σ = 𝑋𝑋T

𝑛 (if 𝑋 is already zero centered)

. . .

For our dataset,

Sample covariance 𝑆2 = 𝐴𝑇 𝐴
(n − 1) = 1

11 [ 53.46 73.42
73.42 107.16 ]

𝐴𝑇 = [ 2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7 ]

. . .

Plotting

The columns of the V matrix:
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import numpy as np
import matplotlib.pyplot as plt
data = np.array([[2.9, 4.0], [-1.5, -0.9], [0.1, 0.0], [-1.0, -1.0], [2.1, 3.0], [-4.0, -5.0], [-2.0, -3.5], [2.2, 2.6], [0.2, 1.0], [2.0, 3.5], [1.5, 1.0], [-2.5, -4.7]])
Ud,Sd,Vd=np.linalg.svd(data)
print(Vd)
plt.clf()

plt.scatter(data[:,0],data[:,1])
plt.quiver(0,0,Vd.T[0,0]*Sd[0]/5,Vd.T[1,0]*Sd[0]/5,angles='xy',scale_units='xy',scale=1, color = 'red')
plt.quiver(0,0,Vd.T[0,1],Vd.T[1,1],angles='xy',scale_units='xy',scale=1, color = 'blue')
plt.axis('equal')
plt.show()

[[-0.57294952 -0.81959066]
[ 0.81959066 -0.57294952]]
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Walk through why these vectors are actually the eigenvectors
of the covariance matrix.

The components of the data matrix
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#plt.scatter(data[:,0],data[:,1])
plt.clf()
component1 = np.outer(Ud[:,0],Sd[0]*Vd[0])
component2 = np.outer(Ud[:,1],Sd[1]*Vd[1])
plt.scatter(component1[:,0],component1[:,1])
plt.scatter(component2[:,0],component2[:,1])
combined = component1 + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')
# add a legend
plt.legend(["component 1", "component 2", "combined"])
plt.show()
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The columns of the U matrix

plt.scatter(Ud.T[0]*Sd[0],Ud.T[1]*Sd[1])
plt.quiver(0,0,0,1,angles='xy',scale_units='xy',scale=1)
plt.quiver(0,0,1,0,angles='xy',scale_units='xy',scale=1)
plt.axis('equal')
# give x label "column u1" and y label "column u2"
plt.xlabel("column u1")
plt.ylabel("column u2")
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plt.show()
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What if we had different orthogonal matrix for V, that
wasn’t eigenvectors of the covariance matrix?

va=np.array([[1,0],[0,1]])
ua=np.matmul(data,va)
plt.scatter(ua[:,0],ua[:,1])
print(np.cov(ua.T))
plt.axis('equal')
# give x label "column u1" and y label "column u2"
plt.xlabel("column u1")
plt.ylabel("column u2")

plt.show()

[[4.86 6.67454545]
[6.67454545 9.74181818]]
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The columns of the U matrix are no longer orthogonal.

The U matrix as a heat plot

# make a heatmap of the Ud matrix
plt.imshow(Ud, cmap='hot', interpolation='nearest')
plt.colorbar()
plt.show()
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