
Ch5 Lecture 4

SVD on matrices of data

Example: Height and weight

𝐴𝑇 = [ 2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7 ]

. . .
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𝐴𝑇 = [ 2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
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. . .

Plotting
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The columns of the U matrix, graphically:

plt.clf()

plt.scatter(data.T[:,0],data.T[:,1])
plt.quiver(0,0,Ud[0,0]*Sd[0,0]/5,Ud[1,0]*Sd[0,0]/5,angles='xy',scale_units='xy',scale=1, color = 'red')
plt.quiver(0,0,Ud[0,1]*Sd[1,1]/5,Ud[1,1]*Sd[1,1]/5,angles='xy',scale_units='xy',scale=1, color = 'blue')
plt.axis('equal')
plt.show()
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. . .

U captures relationships between the rows of the data ma-
trix.

. . .

Since there are only two rows, only 2x2 matrix needed to cap-
ture all the relationships.

The first two rows of the 𝑉 𝑇 matrix

#plt.scatter(data[:,0],data[:,1])
plt.clf()
plt.imshow(Vd.T[:2,:])

plt.show()
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. . .

V captures relationships between the columns of the data ma-
trix. 12x12 possible values, but only 12x2 needed to capture
all the relationships.

The data from these first two rows of the 𝑉 𝑇 matrix, after mul-
tiplication by the singular values and rotated by the columns
of the U matrix:

#plt.scatter(data[:,0],data[:,1])
plt.clf()
component1 = np.outer(Vd.T[:,0],Sd[0,0]*Ud[0])
component2 = np.outer(Vd.T[:,1],Sd[1,1]*Ud[1])
plt.scatter(component1[:,0],component1[:,1])
plt.scatter(component2[:,0],component2[:,1])
combined = component1 + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')
# add a legend
plt.legend(["component 1", "component 2", "component 1 + component 2"])
plt.show()
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. . .

A reminder:

A = USVT = 𝜎1𝑢1𝑣T
1 + ⋯ + 𝜎𝑟𝑢𝑟𝑣T

𝑟

SVD on images

Motivation: a cat

# display the path of the current python environment

import cv2

image = cv2.imread('test_cat.png', cv2.IMREAD_GRAYSCALE)
plt.figure(figsize=(2, 2))
plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()
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Dimensions of the decomposition

What are the dimensions of the decompositions for an image?
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U, S, Vt = np.linalg.svd(image, full_matrices=False)
print(f'The shape of U is {U.shape}, the shape of S is {S.shape}, the shape of V is {Vt.shape}')

The shape of U is (360, 360), the shape of S is (360,), the shape of V is (360, 360)

pause

. . .

Left singular values, corresponding to U, are the eigenvalues
of 𝐴𝐴𝑇 . For an image, 𝐴𝐴𝑇 is the covariance matrix of the
rows of 𝐴.

. . .

Right singular values are the eigenvalues of 𝐴𝑇 𝐴. For an
image, 𝐴𝑇 𝐴 is the covariance matrix of the columns of 𝐴.

Simple example

Data
1st Eigenvector 

 of ATA 
 1st right singular vector 

1st Eigenvector 
 of AAT 

 1st left singular vector
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Reconstructing our matrix

U, S, Vt = np.linalg.svd(A, full_matrices=False)
ax1 = plt.subplot(141)
ax2 = plt.subplot(142)
ax3 = plt.subplot(143)
ax4 = plt.subplot(144)
ax1.imshow(A, cmap='gray')
ax2.imshow(np.outer(U[:,0], Vt[0,:])*S[0], cmap='gray')
ax3.imshow(np.outer(U[:,1], Vt[1,:])*S[1], cmap='gray')
ax4.imshow(np.outer(U[:,0], Vt[0,:])*S[0]+np.outer(U[:,1], Vt[1,:])*S[1], cmap='gray')
for ax in [ax1, ax2, ax3,ax4]:

ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])

ax1.set_title('Data')
ax2.set_title('1st component \n * $\sigma_1$')
ax3.set_title('2nd component \n * $\sigma_2$')
ax4.set_title('1st + 2nd \n component')
plt.show()

Data
1st component 

 * 1
2nd component 

 * 2
1st + 2nd 

 component

How much of the variance is captured by the first two compo-
nents?

The variance captured by the each component is the sum of the
squares of the singular values divided by the sum of the squares
of all the singular values.
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Back to the cat

# !pip3 install opencv-python

plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()
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U, S, Vt = np.linalg.svd(image, full_matrices=False)

fig = plt.figure(figsize=(12, 6))
imsub = image-np.mean(image,axis=0)
imsub = imsub - np.mean(imsub,axis=1)
aat=imsub@imsub.T
ata=imsub.T@imsub
ax1=fig.add_subplot(121)
ax1.imshow(ata)

ax2=fig.add_subplot(122)
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ax2.imshow(aat)
ax2.set_title("AA^T")
ax1.set_title("A^TA")
plt.show()
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First Singular Value
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Second Singular Value

plot_uv(1)
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Third Singular Value

plot_uv(2)
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Adding them up

fig = plt.figure(figsize=(12, 6))
for i in range(3):

reconstructed_image = np.matrix(U[:,i:i+1]) * np.diag(S[i:i+1]) * np.matrix(Vt[i:i+1,:])
ax1 = fig.add_subplot(131+i)
ax1.imshow(reconstructed_image, cmap='gray')
ax1.set_title(f'Image from Singular Value {i+1}')

plt.show()
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. . .

plt.figure(figsize=(16,4))

# start, end, step = 5, 25, 5
start, end, step = 1, 5, 1
for i in range(start, end, step):

plt.subplot(1, (end - start) // step + 1, (i - start) // step + 1)
reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % i)

plt.tight_layout()
plt.show()
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n = 4

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5
#start, end, step = 1, 5, 1
for i in range(start, end, step):

plt.subplot(1, (end - start) // step + 1, (i - start) // step + 1)
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reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % i)

plt.tight_layout()
plt.show()
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n = 20

Color images
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# SVD for each channel
U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

n = 50 # rank approximation parameter
R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :])
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])
B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

# Combining the compressed channels
compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np.clip(B_compressed, 1, 255)])
compressed_image = compressed_image.astype(np.uint8)
plt.imshow(compressed_image)
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plt.title('n = %s' % n)
plt.show()

# Plotting the compressed RGB channels
plt.subplot(1, 3, 1)
plt.imshow(R_compressed, cmap='Reds_r')
plt.subplot(1, 3, 2)
plt.imshow(B_compressed, cmap='Blues_r')
plt.subplot(1, 3, 3)
plt.imshow(G_compressed, cmap='Greens_r')
plt.show()
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How many singular values to keep?

# Plotting the singular values
plt.figure(figsize=(8,4))

plt.subplot(1, 2, 1)
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title('Singular Values')

plt.subplot(1, 2, 2)
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value (log scale)')
plt.title('Singular Values (log scale)')
plt.yscale('log')

plt.tight_layout()
plt.show()
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Different sorts of images

Just plain noise:
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noise = np.random.randint(0,2,size=(200,200))
plt.imshow(noise, cmap='gray')

0 50 100 150

0

25

50

75

100

125

150

175

U_N, S_N, Vt_N = np.linalg.svd(noise, full_matrices=False)

# Plotting the compressed noise for different values of n
components = [1, 5, 10, 50, 100, 200]

fig = plt.figure(figsize=(12,8))

for i in range(len(components)):
plt.subplot(2, 3, i+1)
noise_compressed = np.matrix(U_N[:, :components[i]]) * np.diag(S_N[:components[i]]) * np.matrix(Vt_N[:components[i], :])
plt.imshow(noise_compressed, cmap='gray')
plt.title('n = %s' % components[i])

plt.tight_layout()
plt.show()
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n = 200

pause

def plot_singular_values(S, title):
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title(title)

plt.figure(figsize=(8, 8))

plt.subplot(2, 2, 1)
plot_singular_values(S_N, 'Singular Values')

plt.subplot(2, 2, 2)
plot_singular_values(S_N, 'Singular Values (log scale)')
plt.yscale('log')

plt.subplot(2, 2, 3)
plot_singular_values(S_N[1:], 'Singular Values (without first singular value)')

plt.subplot(2, 2, 4)
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plot_singular_values(S_N[1:], 'Singular Values (without first singular value, log scale)')
plt.yscale('log')

plt.tight_layout()
plt.show()
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Plaid shirt

# Show plaid pattern image
plaid_image = cv2.imread('plaid_pattern.jpg')
plt.imshow(plaid_image[:,:,::-1])
plt.title('Plaid Pattern Image')
plt.show()

# Split the image into R, G, and B color channels
B, G, R = cv2.split(plaid_image)
plt.subplot(1, 3, 1)
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plt.imshow(R, cmap='Reds_r')
plt.subplot(1, 3, 2)
plt.imshow(B, cmap='Blues_r')
plt.subplot(1, 3, 3)
plt.imshow(G, cmap='Greens_r')
plt.show()
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def rgb_approximation(R, G, B, n):
U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :])
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])
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B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np.clip(B_compressed, 1, 255)])
compressed_image = compressed_image.astype(np.uint8)

return compressed_image

n_values = [1, 5, 25]

plt.figure(figsize=(12, 6))
for i, n in enumerate(n_values):

plt.subplot(1, len(n_values), i+1)
plt.imshow(rgb_approximation(R, G, B, n))
plt.title('n = %s' % n)

plt.tight_layout()
plt.show()
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Singular values

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)
plot_singular_values(S_R, 'Singular Values (R)')

plt.subplot(2, 3, 2)
plot_singular_values(S_G, 'Singular Values (G)')

plt.subplot(2, 3, 3)
plot_singular_values(S_B, 'Singular Values (B)')

plt.subplot(2, 3, 4)
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plot_singular_values(S_R, 'Singular Values (log scale) (R)')
plt.yscale('log')

plt.subplot(2, 3, 5)
plot_singular_values(S_G, 'Singular Values (log scale) (G)')
plt.yscale('log')

plt.subplot(2, 3, 6)
plot_singular_values(S_B, 'Singular Values (log scale) (B)')
plt.yscale('log')

plt.tight_layout()
plt.show()
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Individual components

First component:

U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
plot_uv(0, U=U_R, S=S_R, Vt=Vt_R)
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Second component:

plot_uv(1, U=U_R, S=S_R, Vt=Vt_R)
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Using “PCA” from sklearn

This is just an easier way to implement taking these first few
components…

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(R) # fit the model -- compute the matrices
transformed = pca.transform(R) # transform the data
print(f'The shape of the image is {R.shape}, and the shape of the compressed image is {transformed.shape}')
plt.imshow(transformed.T)

The shape of the image is (168, 299), and the shape of the compressed image is (168, 2)
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. . .

plt.imshow(pca.inverse_transform(transformed))
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Try adding noise…

alpha = 10
R_noisy = R + np.random.normal(0, 10, R.shape)*alpha
plt.imshow(R_noisy)
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Now clean it up with PCA:

pca = PCA(n_components=2)
pca.fit(R_noisy)
plt.imshow(pca.inverse_transform(pca.transform(R_noisy)))
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SVD in higher dimensions

Faces

from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)

# display a few of the faces, along with their names
fig, ax = plt.subplots(3, 4)
for i, axi in enumerate(ax.flat):

axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],

xlabel=faces.target_names[faces.target[i]])

print(f'The shape of the faces dataset is {faces.images.shape}')

The shape of the faces dataset is (1348, 62, 47)
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Colin Powell George W Bush George W Bush George W Bush

Hugo Chavez George W BushJunichiro KoizumiGeorge W Bush

Tony Blair Ariel Sharon George W BushDonald Rumsfeld

pause

PCA on faces

pca = PCA(150, svd_solver='randomized', random_state=42)
pca_small = PCA(10, svd_solver='randomized', random_state=42)
pca_very_small = PCA(2, svd_solver='randomized', random_state=42)
pca.fit(faces.data)
pca_small.fit(faces.data)
pca_very_small.fit(faces.data)

PCA(n_components=2, random_state=42, svd_solver='randomized')

This treatment from here
. . .

fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i].reshape(62, 47), cmap='bone')
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Reconstructions

# Compute the components and projected faces
pca = pca.fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

components_small = pca_small.transform(faces.data)
projected_small = pca_small.inverse_transform(components_small)

components_very_small = pca_very_small.transform(faces.data)
projected_very_small = pca_very_small.inverse_transform(components_very_small)

# Plot the results
fig, ax = plt.subplots(4, 10, figsize=(10, 6.5),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i in range(10):
ax[0, i].imshow(faces.data[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected_very_small[i].reshape(62, 47), cmap='binary_r')
ax[2, i].imshow(projected_small[i].reshape(62, 47), cmap='binary_r')
ax[3, i].imshow(projected[i].reshape(62, 47), cmap='binary_r')
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ax[0, 0].set_ylabel('full-dim\ninput')
ax[1, 0].set_ylabel('2-dim\nreconstruction');
ax[2, 0].set_ylabel('10-dim\nreconstruction');
ax[3, 0].set_ylabel('150-dim\nreconstruction');
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Really cool demo of SVD image compression: https://timbaumann.info/svd-
image-compression-demo/

Now you

Code up your own image compression using SVD and show
the left and right singular vectors, the singular values, and the
reconstructed images.

Share with the class!
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