Chb5 Lecture 4

SVD on matrices of data

Example: Height and weight

AT — 29 —-15 01 —-1.0 2.1 —40 —2.0 2.2 02 2.0 1.5
| 40 —-09 0.0 —-1.0 3.0 —5.0 —3.5 2.6 1.0 3.5 1.0
weight (zero-centered) ‘ //
4 ‘ hd
!
/‘6
. /
z 7
7
/
/
e / °
/
4
4 -2 /' height
| 7 (zero-centered)
/
e/
/
/
/
/ 2
| 7
|/
/
/
Vax]
/
v -4
/
/
o/ °
® /

—2.5
—4.7

129 -15 01 —-1.0 21 —40 -20 22 02 20 15 —-25

T
AT = 40 -09 00 -10 30 —-50 —-35 26 10 35 1.0 —4.7

Plotting

<Figure size 1650x1050 with O Axes>

Data matrix
data

—0.5
0.0
0.5 4
1.0

15-
0 2 4 6 8 10

SVD matrices

-0.5
0.0
0.5
1.0

15

The columns of the U matrix, graphically:
plt.clfO)

plt.scatter(data.T[:,0] ,data.T[:,1])
plt.quiver(0,0,Ud[0,0]*Sd[0,0]/5,Ud[1,0]*Sd[0,0]/5,angles="'xy',scale_units='xy',scale=1, color
plt.quiver(0,0,Ud[0,1]*Sd[1,1]/5,Ud[1,1]1*Sd[1,1]/5,angles="xy',scale_units='xy',scale=1, color
plt.axis('equal')

plt.show()

4 [)
°
°
[]
2_
o o
O_
[]
2
°
—4 -
o °®
-8 -6 -4 -2 0 2 4 6

U captures relationships between the rows of the data ma-
trix.

Since there are only two rows, only 2x2 matrix needed to cap-
ture all the relationships.

The first two rows of the VT matrix
#plt.scatter(datal:,0],datal:,1])
plt.clfO)

plt.imshow(Vd.T[:2,:])

plt.show()

V captures relationships between the columns of the data ma-
trix. 12x12 possible values, but only 12x2 needed to capture
all the relationships.

The data from these first two rows of the V7 matrix, after mul-
tiplication by the singular values and rotated by the columns
of the U matrix:

#plt.scatter(datal:,0],datal:,1])

plt.clf()

componentl = np.outer(Vd.T[:,0],3d[0,0]*Ud[0])
component2 = np.outer(Vd.T[:,1],8d[1,11*Ud[1])
plt.scatter(componentl[:,0],componentl[:,1])
plt.scatter(component2[:,0],component2[:,1])
combined = componentl + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')

add a legend

plt.legend(["component 1", "component 2", "component 1 + component 2"])
plt.show()
41 e component1 ®
® component2

2 ® component 1l + component 2

[J
0. [J
0 \

i

_2 -
%
_4 - ..
%
-8 -6 -4 -2 0 2 4 6

A reminder:

A =USVT =oyu o] + -+ o,u,0f

SVD on images

Motivation: a cat

display the path of the current python environment
import cv2

image = cv2.imread('test_cat.png', cv2.IMREAD_GRAYSCALE)
plt.figure(figsize=(2, 2))

plt.imshow(image, cmap='gray')

plt.title('Cat Image')

plt.show()

Cat Image

100

200

300

0 200

Dimensions of the decomposition

What are the dimensions of the decompositions for an image?

U, S, Vt = np.linalg.svd(image, full_matrices=False)
print (f'The shape of U is {U.shape}, the shape of S is {S.shape}, the shape of V is {Vt.shape}

The shape of U is (360, 360), the shape of S is (360,), the shape of V is (360, 360)

pause

Left singular values, corresponding to U, are the eigenvalues
of AAT. For an image, AAT is the covariance matrix of the
rows of A.

Right singular values are the eigenvalues of A”A. For an
image, AT A is the covariance matrix of the columns of A.

Simple example

1st Eigenvector
of AAT
1st left singular vector

Data

1st Eigenvector
of ATA
t right singular vector

Reconstructing our matrix

U, S, Vt = np.linalg.svd(A, full_matrices=False)

axl = plt.subplot(141)

ax2 = plt.subplot(142)

ax3 = plt.subplot(143)

ax4 = plt.subplot(144)

axl.imshow(A, cmap='gray')

ax2.imshow(np.outer (U[:,0], Vt[0,:]1)*S[0], cmap='gray')

ax3.imshow(np.outer (U[:,1], Vt[1,:]1)*S[1], cmap='gray')

ax4.imshow(np.outer (U[:,0], Vt[0,:]1)*S[0]+np.outer(U[:,1], Vt[1,:]1)*S[1], cmap='gray')

for ax in [axl, ax2, ax3,ax4]:
ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])

axl.set_title('Data')

ax2.set_title('lst component \n * σ_1')

ax3.set_title('2nd component \n * σ_2')

ax4.set_title('lst + 2nd \n component')

plt.show()

1st componeBhd component 1st + 2nd
Data * 01 * 0, component

ul we |om

How much of the variance is captured by the first two compo-
nents?

The variance captured by the each component is the sum of the
squares of the singular values divided by the sum of the squares
of all the singular values.

Back to the cat

!'pip3 install opencv-python

plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()

Cat Image

50

100

150

200

250

300

350

0 100 200 300

U, S, Vt = np.linalg.svd(image, full_matrices=False)

fig = plt.figure(figsize=(12, 6))
imsub = image-np.mean(image,axis=0)
imsub = imsub - np.mean(imsub,axis=1)
aat=imsub@imsub.T

ata=imsub.TQ@imsub
axl=fig.add_subplot(121)
axl.imshow(ata)

ax2=fig.add_subplot (122)

ax2.
ax2.
axl.
plt.

imshow(aat)
set_title("AAT")
set_title("A"TA")
show ()

A"TA AANT

First Singular Value

VAT (row vector extended down)
0 50 100 150 200 250 300 350

0
50
100
150
200
250
300
350
Outer Product U (column vector extended right)
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
0 0
50 50
100 100
150 150
200 200
250 250
300 300
350 350

Second Singular Value

plot_uv(1)

10

V~T (row vector extended down)
0 50 100 150 200 250 300 350
0

50
100
150
200
250
300

350

Outer Product U (column vector extended right)
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 35
L O v

50 50

100 100
150 150
200 200
250 250

300 300

350 350

Third Singular Value

plot_uv(2)

11

VAT (row vector extended down)
0 50 100 150 200 250 300 350
0

50
100
150
200
250
300

350

Outer Product U (column vector extended right)
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

0 0+ . \ . \ \ \

50 50

100 100
150 150
200 200
250 250

300 300

350 350

Adding them up

fig = plt.figure(figsize=(12, 6))
for i in range(3):
reconstructed_image = np.matrix(U[:,i:i+1]) * np.diag(S[i:i+1]) * np.matrix(Vt[i:i+1,:])
axl = fig.add_subplot(131+i)
axl.imshow(reconstructed_image, cmap='gray')
axl.set_title(f'Image from Singular Value {i+1}')
plt.show()

12

Image from Singular Value 1 o Image from Singular Value 2 Image from Singular Value 3

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5

start, end, step =1, 5, 1

for i in range(start, end, step):
plt.subplot(l, (end - start) // step + 1, (i - start) // step + 1)
reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % 1i)

plt.tight_layout ()
plt.show()

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5
#start, end, step =1, 5, 1
for i in range(start, end, step):
plt.subplot(l, (end - start) // step + 1, (i - start) // step + 1)

13

reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :1)
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % 1)

plt.tight_layout()
plt.show()

SVD for each channel

U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

n = 50 # rank approximation parameter

R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :1)
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :]1)
B_compressed = np.matrix(U_B[:, :n]l) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :1)

Combining the compressed channels

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np
compressed_image = compressed_image.astype(np.uint8)

plt.imshow(compressed_image)

14

plt.title('n = %s' % n)

plt.show()

Plotting the compressed RGB channels
plt.subplot(1l, 3, 1)
plt.imshow(R_compressed, cmap='Reds_r')
plt.subplot(l, 3, 2)
plt.imshow(B_compressed, cmap='Blues_r')
plt.subplot(1l, 3, 3)
plt.imshow(G_compressed, cmap='Greens_r')
plt.show()

50
100
150
200
250

300

350
0 100 200 300

0 200 0 200 0 200

15

How many singular values to keep?

Plotting the singular values
plt.figure(figsize=(8,4))

plt.subplot(l, 2, 1)
plt.plot(range(l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title('Singular Values')

plt.subplot(1l, 2, 2)

plt.plot(range(l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value (log scale)')
plt.title('Singular Values (log scale)')
plt.yscale('log")

plt.tight_layout ()
plt.show()

Singular Values Singular Values (log scale)

104 4

103 4

102 4

10! 4

Singular Value
N
o
o
o
o
Singular Value (log scale)

10°

10000
5000 -
i 1071 4

T T T T T T T T
0 100 200 300 0 100 200 300
Singular Value Index Singular Value Index

Different sorts of images

Just plain noise:

16

noise = np.random.randint(0,2,size=(200,200))
plt.imshow(noise, cmap='gray')

0 T .- %ﬁ;ﬁ;ﬁﬂ
25 e

50
75 PEiy
100
125

150 {a i

175 &

St

el v e

e K- e i

U_N, S_N, Vt_N = np.linalg.svd(noise, full matrices=False)

Plotting the compressed noise for different values of n
components = [1, 5, 10, 50, 100, 200]

fig = plt.figure(figsize=(12,8))

for i in range(len(components)):
plt.subplot(2, 3, i+1)
noise_compressed = np.matrix(U_N[:, :components[i]]) * np.diag(S_N[:components[i]l]) * np.m:
plt.imshow(noise_compressed, cmap='gray')
plt.title('n = %s' % components[i])

plt.tight_layout ()
plt.show()

17

00 125 150 175 75 100 125 150 175 75 100 125 150 175
0 n =100 n =200

0 25 50 75 100 125 150 175

def plot_singular_values(S, title):
plt.plot(range(1l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title(title)

plt.figure(figsize=(8, 8))

plt.subplot(2, 2, 1)
plot_singular_values(S_N, 'Singular Values')

plt.subplot(2, 2, 2)
plot_singular_values(S_N, 'Singular Values (log scale)')

plt.yscale('log')

plt.subplot(2, 2, 3)
plot_singular_values(S_N[1:], 'Singular Values (without first singular value)')

plt.subplot(2, 2, 4)

18

plot_singular_values(S_N[1:], 'Singular Values (without first singular value, log scale)')
plt.yscale('log')

plt.tight_layout ()

plt.show()
Singular Values Singular Values (log scale)
100 107 4
80
10t
o o
2 60]
s s
= 4
& T
3 S 10°
2 404 £
2l w
204 101
| \
0 50 100 150 200 0 50 100 150 200
Singular Value Index Singular Value Index
Singular Values (without first singular valugjngular Values (without first singular value, log scale)
144
101 4
124
10 4
[[}
3 2
S g g 10
= 4
© i)
5 61 E)
e 2
%) @
44
107t
54
04
0 50 100 150 200 0 50 100 150 200
Singular Value Index Singular Value Index
Plaid shirt

Show plaid pattern image

plaid_image = cv2.imread('plaid_pattern.jpg')
plt.imshow(plaid_image[:,:,::-1])
plt.title('Plaid Pattern Image')

plt.show()

Split the image into R, G, and B color channels

B, G, R = cv2.split(plaid_image)
plt.subplot(1l, 3, 1)

19

plt.
plt.
plt.
plt.
plt.
plt.

25
50 -
75

100

125

150

imshow(R, cmap='Reds_r')
subplot (1, 3, 2)

imshow(B, cmap='Blues_r')
subplot(1, 3, 3)

imshow(G, cmap='Greens_r')

show ()

0 100 200

pause

Plaid Pattern

100 150

0 100 200 0 100 200

def rgb_approximation(R, G, B,

UR, SR, Vt_R
U_G, S_G, Vt_G
U_B, S_B, Vt_B

R_compressed =
G_compressed

np.linalg.
np.linalg.
np.linalg.

np.matrix(U_
np.matrix(U_

20

Image

200 250

n):

svd(R, full_matrices=False)
svd(G, full matrices=False)
svd(B, full_matrices=False)

R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :]1)
G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])

B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255)
compressed_image = compressed_image.astype(np.uint8)

return compressed_image
n_values = [1, 5, 25]

plt.figure(figsize=(12, 6))

for i, n in enumerate(n_values):
plt.subplot(l, len(n_values), i+1)
plt.imshow(rgb_approximation(R, G, B, n))
plt.title('n = %s' % n)

plt.tight_layout()
plt.show()

0 50 100 150 200 250 100 150 200 250

Singular values

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)
plot_singular_values(S_R, 'Singular Values (R)')

plt.subplot(2, 3, 2)
plot_singular_values(S_G, 'Singular Values (G)')

plt.subplot(2, 3, 3)
plot_singular_values(S_B, 'Singular Values (B)')

plt.subplot(2, 3, 4)

21

plot_singular_values(S_R, 'Singular Values (log scale) (R)')
plt.yscale('log')

plt.subplot(2, 3, 5)
plot_singular_values(S_G, 'Singular Values (log scale) (G)')
plt.yscale('log')

plt.subplot(2, 3, 6)
plot_singular_values(S_B, 'Singular Values (log scale) (B)')
plt.yscale('log')

plt.tight_layout ()
plt.show()

Singular Values (R) Singular Values (G) Singular Values (B)
40000
350004
40000 35000
300004
30000
30000 25000 4
3 S 25000 3
s s £ 20000
5 50000 5 20000]
2 215000 2150009
] @
10000 10000 100004
5000 5000
0 0 0
0 100 200 300 0 100 200 300 0 100 200 300
Singular Value Index Singular Value Index Singular Value Index
Singular Values (log scale) (R) Singular Values (log scale) (G) Singular Values (log scale) (B)
104 104 104
10° 10° 10°
o o o
= RN El
g 10 3 10 S 102
5 5 5
3 10 3 i 3
2 2 10 2 1014
[[@
10° o
10¢ 1004
10! -1
10 101
1072
0 100 200 300 0 100 200 300 0 100 200 300
Singular Value Index Singular Value Index Singular Value Index

Individual components
First component:

UR, S_R, Vt_ R = np.linalg.svd(R, full matrices=False)
plot_uv(0, U=U_R, S=S_R, Vt=Vt_R)

22

VAT (row vector extended down)
0 50 100 150 200 250

0
50
100
150
200
250
U (column vector extended right)
0 20 40 60 80 100120140160
Outer Product 0
0 50 100 150 200 250 20

40
60
80

100

120

140

160

Second component:

plot_uv(l, U=U_R, S=S_R, Vt=Vt_R)

23

VAT (row vector extended down)
0 50 100 150 200 250

0

50

100

150

200

250

U (column vector extended right)
0 20 40 60 80 100120140160
Ot

Outer Product

0 50 100 150 200 250 20
0
20 40
40 60
60
80 80
100
120 100
140 120
160
140
160

Using “PCA” from sklearn

This is just an easier way to implement taking these first few
components...

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(R) # fit the model -- compute the matrices

transformed = pca.transform(R) # transform the data

print(f'The shape of the image is {R.shape}, and the shape of the compressed image is {transfo
plt.imshow(transformed.T)

The shape of the image is (168, 299), and the shape of the compressed image is (168, 2)

e e e e e e e e e e
0 20 40 60 80 100 120 140 160

24

plt.imshow(pca.inverse_transform(transformed))

25
50 1
75 18
100 1%
125 4

150

0 50 100 150 200 250

Try adding noise...

alpha = 10
R_noisy = R + np.random.normal(0, 10, R.shape)*alpha
plt.imshow(R_noisy)

25
50 ‘
75

100

125

150

0 50 100 150 200 250

25

Now clean it up with PCA:

pca = PCA(n_components=2)
pca.fit(R_noisy)
plt.imshow(pca.inverse_transform(pca.transform(R_noisy)))

25
50 o
75
100
125

150

0 50 100 150 200 250

SVD in higher dimensions

Faces

from sklearn.datasets import fetch_lfw_people
faces = fetch_l1fw_people(min_faces_per_person=60)

display a few of the faces, along with their names
fig, ax = plt.subplots(3, 4)
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],
xlabel=faces.target_names[faces.target[i]])

print (f'The shape of the faces dataset is {faces.images.shapel}')

The shape of the faces dataset is (1348, 62, 47)

26

4

‘IIIIIIIUSh(EeIIIIEi:(:

!Eggiillunmse

Tony Blair Ariel Sharon George W BushDonald Rumsfi

pause

PCA on faces

pca = PCA(150, svd_solver='randomized', random_state=42)
pca_small = PCA(10, svd_solver='randomized', random_state=42)
pca_very_small = PCA(2, svd_solver='randomized', random_state=42)
pca.fit(faces.data)

pca_small.fit(faces.data)

pca_very_small.fit(faces.data)

PCA(n_components=2, random_state=42, svd_solver='randomized')

This treatment from here
fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i] .reshape(62, 47), cmap='bone')

27

https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.09-Principal-Component-Analysis.ipynb

Reconstructions

Compute the components and projected faces
pca = pca.fit(faces.data)

components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

components_small = pca_small.transform(faces.data)
projected_small = pca_small.inverse_transform(components_small)

components_very_small = pca_very_small.transform(faces.data)
projected_very_small = pca_very_small.inverse_transform(components_very_small)

Plot the results
fig, ax = plt.subplots(4, 10, figsize=(10, 6.5),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0.1, wspace=0.1))
for i in range(10):
ax[0, i].imshow(faces.datal[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected_very_small[i].reshape(62, 47), cmap='binary_r')
ax[2, i].imshow(projected_small[i].reshape(62, 47), cmap='binary_r')
ax[3, i].imshow(projected[i] .reshape(62, 47), cmap='binary_r')

28

ax[0, 0].set_ylabel('full-dim\ninput')

ax[1, 0].set_ylabel('2-dim\nreconstruction');
ax[2, 0].set_ylabel('10-dim\nreconstruction');
ax[3, 0].set_ylabel('150-dim\nreconstruction');

HBE:
SR R
CBEEEE PR
CBEEEERREL

full-dim
input

10-dim 2-dim
reconstruction reconstruction

150-dim
reconstruction

Really cool demo of SVD image compression: https://timbaumann.info/svd-
image-compression-demo/

Now you

Code up your own image compression using SVD and show
the left and right singular vectors, the singular values, and the
reconstructed images.

Share with the class!

29

	SVD on matrices of data
	Example: Height and weight
	
	Plotting
	
	
	

	SVD on images
	Motivation: a cat
	Dimensions of the decomposition
	Simple example
	Reconstructing our matrix
	Back to the cat
	First Singular Value
	Second Singular Value
	Third Singular Value
	Adding them up
	
	Color images
	How many singular values to keep?
	Different sorts of images
	
	
	Plaid shirt
	
	Singular values
	Individual components
	
	Using ``PCA'' from sklearn
	

	SVD in higher dimensions
	Faces
	PCA on faces
	Reconstructions
	
	
	Now you

