
Ch5 Lecture 4

SVD on matrices of data

Example: Height and weight

𝐴𝑇 = [2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7]

. . .

1

𝐴𝑇 = [2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7]

. . .

Plotting

<Figure size 1650x1050 with 0 Axes>

0 2 4 6 8 10

0.5

0.0

0.5

1.0

1.5

data
Data matrix

0 1

0.5

0.0

0.5

1.0

1.5

U

0 2 4 6 8 10

0
1

S

0 10

0

5

10

VT
SVD matrices

The columns of the U matrix, graphically:

plt.clf()

plt.scatter(data.T[:,0],data.T[:,1])
plt.quiver(0,0,Ud[0,0]*Sd[0,0]/5,Ud[1,0]*Sd[0,0]/5,angles='xy',scale_units='xy',scale=1, color = 'red')
plt.quiver(0,0,Ud[0,1]*Sd[1,1]/5,Ud[1,1]*Sd[1,1]/5,angles='xy',scale_units='xy',scale=1, color = 'blue')
plt.axis('equal')
plt.show()

2

8 6 4 2 0 2 4 6

4

2

0

2

4

. . .

U captures relationships between the rows of the data ma-
trix.

. . .

Since there are only two rows, only 2x2 matrix needed to cap-
ture all the relationships.

The first two rows of the 𝑉 𝑇 matrix

#plt.scatter(data[:,0],data[:,1])
plt.clf()
plt.imshow(Vd.T[:2,:])

plt.show()

0 2 4 6 8 10

0

1

3

. . .

V captures relationships between the columns of the data ma-
trix. 12x12 possible values, but only 12x2 needed to capture
all the relationships.

The data from these first two rows of the 𝑉 𝑇 matrix, after mul-
tiplication by the singular values and rotated by the columns
of the U matrix:

#plt.scatter(data[:,0],data[:,1])
plt.clf()
component1 = np.outer(Vd.T[:,0],Sd[0,0]*Ud[0])
component2 = np.outer(Vd.T[:,1],Sd[1,1]*Ud[1])
plt.scatter(component1[:,0],component1[:,1])
plt.scatter(component2[:,0],component2[:,1])
combined = component1 + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')
add a legend
plt.legend(["component 1", "component 2", "component 1 + component 2"])
plt.show()

8 6 4 2 0 2 4 6

4

2

0

2

4 component 1
component 2
component 1 + component 2

4

. . .

A reminder:

A = USVT = 𝜎1𝑢1𝑣T
1 + ⋯ + 𝜎𝑟𝑢𝑟𝑣T

𝑟

SVD on images

Motivation: a cat

display the path of the current python environment

import cv2

image = cv2.imread('test_cat.png', cv2.IMREAD_GRAYSCALE)
plt.figure(figsize=(2, 2))
plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()

0 200

0

100

200

300

Cat Image

Dimensions of the decomposition

What are the dimensions of the decompositions for an image?

5

U, S, Vt = np.linalg.svd(image, full_matrices=False)
print(f'The shape of U is {U.shape}, the shape of S is {S.shape}, the shape of V is {Vt.shape}')

The shape of U is (360, 360), the shape of S is (360,), the shape of V is (360, 360)

pause

. . .

Left singular values, corresponding to U, are the eigenvalues
of 𝐴𝐴𝑇 . For an image, 𝐴𝐴𝑇 is the covariance matrix of the
rows of 𝐴.

. . .

Right singular values are the eigenvalues of 𝐴𝑇 𝐴. For an
image, 𝐴𝑇 𝐴 is the covariance matrix of the columns of 𝐴.

Simple example

Data
1st Eigenvector

 of ATA
 1st right singular vector

1st Eigenvector
 of AAT

 1st left singular vector

6

Reconstructing our matrix

U, S, Vt = np.linalg.svd(A, full_matrices=False)
ax1 = plt.subplot(141)
ax2 = plt.subplot(142)
ax3 = plt.subplot(143)
ax4 = plt.subplot(144)
ax1.imshow(A, cmap='gray')
ax2.imshow(np.outer(U[:,0], Vt[0,:])*S[0], cmap='gray')
ax3.imshow(np.outer(U[:,1], Vt[1,:])*S[1], cmap='gray')
ax4.imshow(np.outer(U[:,0], Vt[0,:])*S[0]+np.outer(U[:,1], Vt[1,:])*S[1], cmap='gray')
for ax in [ax1, ax2, ax3,ax4]:

ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])

ax1.set_title('Data')
ax2.set_title('1st component \n * σ_1')
ax3.set_title('2nd component \n * σ_2')
ax4.set_title('1st + 2nd \n component')
plt.show()

Data
1st component

 * 1
2nd component

 * 2
1st + 2nd

 component

How much of the variance is captured by the first two compo-
nents?

The variance captured by the each component is the sum of the
squares of the singular values divided by the sum of the squares
of all the singular values.

7

Back to the cat

!pip3 install opencv-python

plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()

0 100 200 300

0

50

100

150

200

250

300

350

Cat Image

U, S, Vt = np.linalg.svd(image, full_matrices=False)

fig = plt.figure(figsize=(12, 6))
imsub = image-np.mean(image,axis=0)
imsub = imsub - np.mean(imsub,axis=1)
aat=imsub@imsub.T
ata=imsub.T@imsub
ax1=fig.add_subplot(121)
ax1.imshow(ata)

ax2=fig.add_subplot(122)

8

ax2.imshow(aat)
ax2.set_title("AA^T")
ax1.set_title("A^TA")
plt.show()

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

A^TA

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

AA^T

9

First Singular Value

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

V^T (row vector extended down)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

U (column vector extended right)
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Outer Product

Second Singular Value

plot_uv(1)

10

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

V^T (row vector extended down)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

U (column vector extended right)
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Outer Product

Third Singular Value

plot_uv(2)

11

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

V^T (row vector extended down)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

U (column vector extended right)
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Outer Product

Adding them up

fig = plt.figure(figsize=(12, 6))
for i in range(3):

reconstructed_image = np.matrix(U[:,i:i+1]) * np.diag(S[i:i+1]) * np.matrix(Vt[i:i+1,:])
ax1 = fig.add_subplot(131+i)
ax1.imshow(reconstructed_image, cmap='gray')
ax1.set_title(f'Image from Singular Value {i+1}')

plt.show()

12

0 100 200 300

0

50

100

150

200

250

300

350

Image from Singular Value 1

0 100 200 300

0

50

100

150

200

250

300

350

Image from Singular Value 2

0 100 200 300

0

50

100

150

200

250

300

350

Image from Singular Value 3

. . .

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5
start, end, step = 1, 5, 1
for i in range(start, end, step):

plt.subplot(1, (end - start) // step + 1, (i - start) // step + 1)
reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % i)

plt.tight_layout()
plt.show()

0 100 200 300

0

50

100

150

200

250

300

350

n = 1

0 100 200 300

0

50

100

150

200

250

300

350

n = 2

0 100 200 300

0

50

100

150

200

250

300

350

n = 3

0 100 200 300

0

50

100

150

200

250

300

350

n = 4

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5
#start, end, step = 1, 5, 1
for i in range(start, end, step):

plt.subplot(1, (end - start) // step + 1, (i - start) // step + 1)

13

reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % i)

plt.tight_layout()
plt.show()

0 100 200 300

0

50

100

150

200

250

300

350

n = 5

0 100 200 300

0

50

100

150

200

250

300

350

n = 10

0 100 200 300

0

50

100

150

200

250

300

350

n = 15

0 100 200 300

0

50

100

150

200

250

300

350

n = 20

Color images

0 200

0

100

200

300

0 200

0

100

200

300

0 200

0

100

200

300

SVD for each channel
U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

n = 50 # rank approximation parameter
R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :])
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])
B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

Combining the compressed channels
compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np.clip(B_compressed, 1, 255)])
compressed_image = compressed_image.astype(np.uint8)
plt.imshow(compressed_image)

14

plt.title('n = %s' % n)
plt.show()

Plotting the compressed RGB channels
plt.subplot(1, 3, 1)
plt.imshow(R_compressed, cmap='Reds_r')
plt.subplot(1, 3, 2)
plt.imshow(B_compressed, cmap='Blues_r')
plt.subplot(1, 3, 3)
plt.imshow(G_compressed, cmap='Greens_r')
plt.show()

0 100 200 300

0

50

100

150

200

250

300

350

n = 50

0 200

0

100

200

300

0 200

0

100

200

300

0 200

0

100

200

300

15

How many singular values to keep?

Plotting the singular values
plt.figure(figsize=(8,4))

plt.subplot(1, 2, 1)
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title('Singular Values')

plt.subplot(1, 2, 2)
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value (log scale)')
plt.title('Singular Values (log scale)')
plt.yscale('log')

plt.tight_layout()
plt.show()

0 100 200 300
Singular Value Index

0

5000

10000

15000

20000

25000

30000

35000

40000

Si
ng

ul
ar

 V
al

ue

Singular Values

0 100 200 300
Singular Value Index

10 1

100

101

102

103

104

Si
ng

ul
ar

 V
al

ue
 (l

og
 sc

al
e)

Singular Values (log scale)

Different sorts of images

Just plain noise:

16

noise = np.random.randint(0,2,size=(200,200))
plt.imshow(noise, cmap='gray')

0 50 100 150

0

25

50

75

100

125

150

175

U_N, S_N, Vt_N = np.linalg.svd(noise, full_matrices=False)

Plotting the compressed noise for different values of n
components = [1, 5, 10, 50, 100, 200]

fig = plt.figure(figsize=(12,8))

for i in range(len(components)):
plt.subplot(2, 3, i+1)
noise_compressed = np.matrix(U_N[:, :components[i]]) * np.diag(S_N[:components[i]]) * np.matrix(Vt_N[:components[i], :])
plt.imshow(noise_compressed, cmap='gray')
plt.title('n = %s' % components[i])

plt.tight_layout()
plt.show()

17

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 1

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 5

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 10

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 50

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 100

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

n = 200

pause

def plot_singular_values(S, title):
plt.plot(range(1, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title(title)

plt.figure(figsize=(8, 8))

plt.subplot(2, 2, 1)
plot_singular_values(S_N, 'Singular Values')

plt.subplot(2, 2, 2)
plot_singular_values(S_N, 'Singular Values (log scale)')
plt.yscale('log')

plt.subplot(2, 2, 3)
plot_singular_values(S_N[1:], 'Singular Values (without first singular value)')

plt.subplot(2, 2, 4)

18

plot_singular_values(S_N[1:], 'Singular Values (without first singular value, log scale)')
plt.yscale('log')

plt.tight_layout()
plt.show()

0 50 100 150 200
Singular Value Index

0

20

40

60

80

100

Si
ng

ul
ar

 V
al

ue

Singular Values

0 50 100 150 200
Singular Value Index

10 1

100

101

102

Si
ng

ul
ar

 V
al

ue

Singular Values (log scale)

0 50 100 150 200
Singular Value Index

0

2

4

6

8

10

12

14

Si
ng

ul
ar

 V
al

ue

Singular Values (without first singular value)

0 50 100 150 200
Singular Value Index

10 1

100

101

Si
ng

ul
ar

 V
al

ue

Singular Values (without first singular value, log scale)

Plaid shirt

Show plaid pattern image
plaid_image = cv2.imread('plaid_pattern.jpg')
plt.imshow(plaid_image[:,:,::-1])
plt.title('Plaid Pattern Image')
plt.show()

Split the image into R, G, and B color channels
B, G, R = cv2.split(plaid_image)
plt.subplot(1, 3, 1)

19

plt.imshow(R, cmap='Reds_r')
plt.subplot(1, 3, 2)
plt.imshow(B, cmap='Blues_r')
plt.subplot(1, 3, 3)
plt.imshow(G, cmap='Greens_r')
plt.show()

0 50 100 150 200 250

0

25

50

75

100

125

150

Plaid Pattern Image

0 100 200

0

100

0 100 200

0

100

0 100 200

0

100

pause

def rgb_approximation(R, G, B, n):
U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :])
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])

20

B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np.clip(B_compressed, 1, 255)])
compressed_image = compressed_image.astype(np.uint8)

return compressed_image

n_values = [1, 5, 25]

plt.figure(figsize=(12, 6))
for i, n in enumerate(n_values):

plt.subplot(1, len(n_values), i+1)
plt.imshow(rgb_approximation(R, G, B, n))
plt.title('n = %s' % n)

plt.tight_layout()
plt.show()

0 50 100 150 200 250

0

50

100

150

n = 1

0 50 100 150 200 250

0

50

100

150

n = 5

0 50 100 150 200 250

0

50

100

150

n = 25

Singular values

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)
plot_singular_values(S_R, 'Singular Values (R)')

plt.subplot(2, 3, 2)
plot_singular_values(S_G, 'Singular Values (G)')

plt.subplot(2, 3, 3)
plot_singular_values(S_B, 'Singular Values (B)')

plt.subplot(2, 3, 4)

21

plot_singular_values(S_R, 'Singular Values (log scale) (R)')
plt.yscale('log')

plt.subplot(2, 3, 5)
plot_singular_values(S_G, 'Singular Values (log scale) (G)')
plt.yscale('log')

plt.subplot(2, 3, 6)
plot_singular_values(S_B, 'Singular Values (log scale) (B)')
plt.yscale('log')

plt.tight_layout()
plt.show()

0 100 200 300
Singular Value Index

0

10000

20000

30000

40000

Si
ng

ul
ar

 V
al

ue

Singular Values (R)

0 100 200 300
Singular Value Index

0

5000

10000

15000

20000

25000

30000

35000

40000

Si
ng

ul
ar

 V
al

ue

Singular Values (G)

0 100 200 300
Singular Value Index

0

5000

10000

15000

20000

25000

30000

35000

Si
ng

ul
ar

 V
al

ue

Singular Values (B)

0 100 200 300
Singular Value Index

10 2

10 1

100

101

102

103

104

Si
ng

ul
ar

 V
al

ue

Singular Values (log scale) (R)

0 100 200 300
Singular Value Index

10 1

100

101

102

103

104

Si
ng

ul
ar

 V
al

ue

Singular Values (log scale) (G)

0 100 200 300
Singular Value Index

10 1

100

101

102

103

104

Si
ng

ul
ar

 V
al

ue

Singular Values (log scale) (B)

Individual components

First component:

U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
plot_uv(0, U=U_R, S=S_R, Vt=Vt_R)

22

0 50 100 150 200 250
0

50

100

150

200

250

V^T (row vector extended down)

0 20 40 60 80 100120140160
0

20
40
60
80

100
120
140
160

U (column vector extended right)

0 50 100 150 200 250
0

20
40
60
80

100
120
140
160

Outer Product

Second component:

plot_uv(1, U=U_R, S=S_R, Vt=Vt_R)

23

0 50 100 150 200 250
0

50

100

150

200

250

V^T (row vector extended down)

0 20 40 60 80 100120140160
0

20
40
60
80

100
120
140
160

U (column vector extended right)

0 50 100 150 200 250
0

20
40
60
80

100
120
140
160

Outer Product

Using “PCA” from sklearn

This is just an easier way to implement taking these first few
components…

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(R) # fit the model -- compute the matrices
transformed = pca.transform(R) # transform the data
print(f'The shape of the image is {R.shape}, and the shape of the compressed image is {transformed.shape}')
plt.imshow(transformed.T)

The shape of the image is (168, 299), and the shape of the compressed image is (168, 2)

0 20 40 60 80 100 120 140 160
01

24

. . .

plt.imshow(pca.inverse_transform(transformed))

0 50 100 150 200 250

0

25

50

75

100

125

150

Try adding noise…

alpha = 10
R_noisy = R + np.random.normal(0, 10, R.shape)*alpha
plt.imshow(R_noisy)

0 50 100 150 200 250

0

25

50

75

100

125

150

25

Now clean it up with PCA:

pca = PCA(n_components=2)
pca.fit(R_noisy)
plt.imshow(pca.inverse_transform(pca.transform(R_noisy)))

0 50 100 150 200 250

0

25

50

75

100

125

150

SVD in higher dimensions

Faces

from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)

display a few of the faces, along with their names
fig, ax = plt.subplots(3, 4)
for i, axi in enumerate(ax.flat):

axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],

xlabel=faces.target_names[faces.target[i]])

print(f'The shape of the faces dataset is {faces.images.shape}')

The shape of the faces dataset is (1348, 62, 47)

26

Colin Powell George W Bush George W Bush George W Bush

Hugo Chavez George W BushJunichiro KoizumiGeorge W Bush

Tony Blair Ariel Sharon George W BushDonald Rumsfeld

pause

PCA on faces

pca = PCA(150, svd_solver='randomized', random_state=42)
pca_small = PCA(10, svd_solver='randomized', random_state=42)
pca_very_small = PCA(2, svd_solver='randomized', random_state=42)
pca.fit(faces.data)
pca_small.fit(faces.data)
pca_very_small.fit(faces.data)

PCA(n_components=2, random_state=42, svd_solver='randomized')

This treatment from here
. . .

fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i].reshape(62, 47), cmap='bone')

27

https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.09-Principal-Component-Analysis.ipynb

Reconstructions

Compute the components and projected faces
pca = pca.fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

components_small = pca_small.transform(faces.data)
projected_small = pca_small.inverse_transform(components_small)

components_very_small = pca_very_small.transform(faces.data)
projected_very_small = pca_very_small.inverse_transform(components_very_small)

Plot the results
fig, ax = plt.subplots(4, 10, figsize=(10, 6.5),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i in range(10):
ax[0, i].imshow(faces.data[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected_very_small[i].reshape(62, 47), cmap='binary_r')
ax[2, i].imshow(projected_small[i].reshape(62, 47), cmap='binary_r')
ax[3, i].imshow(projected[i].reshape(62, 47), cmap='binary_r')

28

ax[0, 0].set_ylabel('full-dim\ninput')
ax[1, 0].set_ylabel('2-dim\nreconstruction');
ax[2, 0].set_ylabel('10-dim\nreconstruction');
ax[3, 0].set_ylabel('150-dim\nreconstruction');

fu
ll-

di
m

in
pu

t
2-

di
m

re
co

ns
tru

ct
io

n
10

-d
im

re
co

ns
tru

ct
io

n
15

0-
di

m
re

co
ns

tru
ct

io
n

Really cool demo of SVD image compression: https://timbaumann.info/svd-
image-compression-demo/

Now you

Code up your own image compression using SVD and show
the left and right singular vectors, the singular values, and the
reconstructed images.

Share with the class!

29

	SVD on matrices of data
	Example: Height and weight
	
	Plotting
	
	
	

	SVD on images
	Motivation: a cat
	Dimensions of the decomposition
	Simple example
	Reconstructing our matrix
	Back to the cat
	First Singular Value
	Second Singular Value
	Third Singular Value
	Adding them up
	
	Color images
	How many singular values to keep?
	Different sorts of images
	
	
	Plaid shirt
	
	Singular values
	Individual components
	
	Using ``PCA'' from sklearn
	

	SVD in higher dimensions
	Faces
	PCA on faces
	Reconstructions
	
	
	Now you

