Chb5 Lecture 4

SVD on matrices of data

Example: Height and weight
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Plotting
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The columns of the U matrix, graphically:
plt.clfO)

plt.scatter(data.T[:,0] ,data.T[:,1])
plt.quiver(0,0,Ud[0,0]*Sd[0,0]/5,Ud[1,0]*Sd[0,0]/5,angles="'xy',scale_units='xy',scale=1, color
plt.quiver(0,0,Ud[0,1]*Sd[1,1]/5,Ud[1,1]1*Sd[1,1]/5,angles="xy',scale_units='xy',scale=1, color
plt.axis('equal')

plt.show()
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U captures relationships between the rows of the data ma-
trix.

Since there are only two rows, only 2x2 matrix needed to cap-
ture all the relationships.

The first two rows of the VT matrix
#plt.scatter(datal:,0],datal:,1])
plt.clfO)

plt.imshow(Vd.T[:2,:])

plt.show()




V captures relationships between the columns of the data ma-
trix. 12x12 possible values, but only 12x2 needed to capture
all the relationships.

The data from these first two rows of the V7 matrix, after mul-
tiplication by the singular values and rotated by the columns
of the U matrix:

#plt.scatter(datal:,0],datal:,1])

plt.clf()

componentl = np.outer(Vd.T[:,0],3d[0,0]*Ud[0])
component2 = np.outer(Vd.T[:,1],8d[1,11*Ud[1])
plt.scatter(componentl[:,0],componentl[:,1])
plt.scatter(component2[:,0],component2[:,1])
combined = componentl + component2
plt.scatter(combined[:,0],combined[:,1])
plt.axis('equal')

# add a legend

plt.legend(["component 1", "component 2", "component 1 + component 2"])
plt.show()
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A reminder:

A =USVT =oyu o] + -+ o,u,0f

SVD on images

Motivation: a cat

# display the path of the current python environment
import cv2

image = cv2.imread('test_cat.png', cv2.IMREAD_GRAYSCALE)
plt.figure(figsize=(2, 2))

plt.imshow(image, cmap='gray')

plt.title('Cat Image')

plt.show()
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Dimensions of the decomposition

What are the dimensions of the decompositions for an image?



U, S, Vt = np.linalg.svd(image, full_matrices=False)
print (f'The shape of U is {U.shape}, the shape of S is {S.shape}, the shape of V is {Vt.shape}

The shape of U is (360, 360), the shape of S is (360,), the shape of V is (360, 360)

pause

Left singular values, corresponding to U, are the eigenvalues
of AAT. For an image, AAT is the covariance matrix of the
rows of A.

Right singular values are the eigenvalues of A”A. For an
image, AT A is the covariance matrix of the columns of A.

Simple example

1st Eigenvector
of AAT
1st left singular vector

Data

1st Eigenvector
of ATA
t right singular vector




Reconstructing our matrix

U, S, Vt = np.linalg.svd(A, full_matrices=False)

axl = plt.subplot(141)

ax2 = plt.subplot(142)

ax3 = plt.subplot(143)

ax4 = plt.subplot(144)

axl.imshow(A, cmap='gray')

ax2.imshow(np.outer (U[:,0], Vt[0,:]1)*S[0], cmap='gray')

ax3.imshow(np.outer (U[:,1], Vt[1,:]1)*S[1], cmap='gray')

ax4.imshow(np.outer (U[:,0], Vt[0,:]1)*S[0]+np.outer(U[:,1], Vt[1,:]1)*S[1], cmap='gray')

for ax in [axl, ax2, ax3,ax4]:
ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])

axl.set_title('Data')

ax2.set_title('lst component \n * $\sigma_1$')

ax3.set_title('2nd component \n * $\sigma_2$')

ax4.set_title('lst + 2nd \n component')

plt.show()

1st componeBhd component 1st + 2nd
Data * 01 * 0, component

ul we |om

How much of the variance is captured by the first two compo-
nents?

The variance captured by the each component is the sum of the
squares of the singular values divided by the sum of the squares
of all the singular values.



Back to the cat

# !'pip3 install opencv-python

plt.imshow(image, cmap='gray')
plt.title('Cat Image')
plt.show()

Cat Image
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U, S, Vt = np.linalg.svd(image, full_matrices=False)

fig = plt.figure(figsize=(12, 6))
imsub = image-np.mean(image,axis=0)
imsub = imsub - np.mean(imsub,axis=1)
aat=imsub@imsub.T

ata=imsub.TQ@imsub
axl=fig.add_subplot(121)
axl.imshow(ata)

ax2=fig.add_subplot (122)



ax2.
ax2.
axl.
plt.

imshow(aat)
set_title("AAT")
set_title("A"TA")
show ()

A"TA AANT




First Singular Value

VAT (row vector extended down)
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Second Singular Value

plot_uv(1)

10



V~T (row vector extended down)
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Third Singular Value

plot_uv(2)
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VAT (row vector extended down)
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Adding them up

fig = plt.figure(figsize=(12, 6))
for i in range(3):
reconstructed_image = np.matrix(U[:,i:i+1]) * np.diag(S[i:i+1]) * np.matrix(Vt[i:i+1,:])
axl = fig.add_subplot(131+i)
axl.imshow(reconstructed_image, cmap='gray')
axl.set_title(f'Image from Singular Value {i+1}')
plt.show()
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Image from Singular Value 1 o Image from Singular Value 2 Image from Singular Value 3

plt.figure(figsize=(16,4))

# start, end, step = 5, 25, 5

start, end, step =1, 5, 1

for i in range(start, end, step):
plt.subplot(l, (end - start) // step + 1, (i - start) // step + 1)
reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :])
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % 1i)

plt.tight_layout ()
plt.show()

plt.figure(figsize=(16,4))

start, end, step = 5, 25, 5
#start, end, step =1, 5, 1
for i in range(start, end, step):
plt.subplot(l, (end - start) // step + 1, (i - start) // step + 1)
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reconstructed = np.matrix(U[:, :i]) * np.diag(S[:i]) * np.matrix(Vt[:i, :1)
plt.imshow(reconstructed, cmap='gray')
plt.title('n = %s' % 1)

plt.tight_layout()
plt.show()

# SVD for each channel

U_R, S_R, Vt_R = np.linalg.svd(R, full_matrices=False)
U_G, S_G, Vt_G = np.linalg.svd(G, full_matrices=False)
U_B, S_B, Vt_B = np.linalg.svd(B, full_matrices=False)

n = 50 # rank approximation parameter

R_compressed = np.matrix(U_R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :1)
G_compressed = np.matrix(U_G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :]1)
B_compressed = np.matrix(U_B[:, :n]l) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :1)

# Combining the compressed channels

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255), np
compressed_image = compressed_image.astype(np.uint8)

plt.imshow(compressed_image)
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plt.title('n = %s' % n)

plt.show()

# Plotting the compressed RGB channels
plt.subplot(1l, 3, 1)
plt.imshow(R_compressed, cmap='Reds_r')
plt.subplot(l, 3, 2)
plt.imshow(B_compressed, cmap='Blues_r')
plt.subplot(1l, 3, 3)
plt.imshow(G_compressed, cmap='Greens_r')
plt.show()
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How many singular values to keep?

# Plotting the singular values
plt.figure(figsize=(8,4))

plt.subplot(l, 2, 1)
plt.plot(range(l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title('Singular Values')

plt.subplot(1l, 2, 2)

plt.plot(range(l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value (log scale)')
plt.title('Singular Values (log scale)')
plt.yscale('log")

plt.tight_layout ()
plt.show()
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Different sorts of images

Just plain noise:
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noise = np.random.randint(0,2,size=(200,200))
plt.imshow(noise, cmap='gray')
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U_N, S_N, Vt_N = np.linalg.svd(noise, full matrices=False)

# Plotting the compressed noise for different values of n
components = [1, 5, 10, 50, 100, 200]

fig = plt.figure(figsize=(12,8))

for i in range(len(components)):
plt.subplot(2, 3, i+1)
noise_compressed = np.matrix(U_N[:, :components[i]]) * np.diag(S_N[:components[i]l]) * np.m:
plt.imshow(noise_compressed, cmap='gray')
plt.title('n = %s' % components[i])

plt.tight_layout ()
plt.show()
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def plot_singular_values(S, title):
plt.plot(range(1l, len(S) + 1), S)
plt.xlabel('Singular Value Index')
plt.ylabel('Singular Value')
plt.title(title)

plt.figure(figsize=(8, 8))

plt.subplot(2, 2, 1)
plot_singular_values(S_N, 'Singular Values')

plt.subplot(2, 2, 2)
plot_singular_values(S_N, 'Singular Values (log scale)')

plt.yscale('log')

plt.subplot(2, 2, 3)
plot_singular_values(S_N[1:], 'Singular Values (without first singular value)')

plt.subplot(2, 2, 4)
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plot_singular_values(S_N[1:], 'Singular Values (without first singular value, log scale)')
plt.yscale('log')

plt.tight_layout ()

plt.show()
Singular Values Singular Values (log scale)
100 107 4
80
10t
o o
2 60 ]
s s
= 4
& T
3 S 10°
2 404 £
2l w
204 101
| \
0 50 100 150 200 0 50 100 150 200
Singular Value Index Singular Value Index
Singular Values (without first singular valugjngular Values (without first singular value, log scale)
144
101 4
124
10 4
[ [}
3 2
S g g 10
= 4
© i)
5 61 E)
e 2
%) @
44
107t
54
04
0 50 100 150 200 0 50 100 150 200
Singular Value Index Singular Value Index
Plaid shirt

# Show plaid pattern image

plaid_image = cv2.imread('plaid_pattern.jpg')
plt.imshow(plaid_image[:,:,::-1])
plt.title('Plaid Pattern Image')

plt.show()

# Split the image into R, G, and B color channels

B, G, R = cv2.split(plaid_image)
plt.subplot(1l, 3, 1)
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imshow(R, cmap='Reds_r')
subplot (1, 3, 2)

imshow(B, cmap='Blues_r')
subplot(1, 3, 3)

imshow(G, cmap='Greens_r')

show ()
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def rgb_approximation(R, G, B,

UR, SR, Vt_R
U_G, S_G, Vt_G
U_B, S_B, Vt_B

R_compressed =
G_compressed

np.linalg.
np.linalg.
np.linalg.

np.matrix(U_
np.matrix(U_
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Image

200 250

n):

svd(R, full_matrices=False)
svd(G, full matrices=False)
svd(B, full_matrices=False)

R[:, :n]) * np.diag(S_R[:n]) * np.matrix(Vt_R[:n, :]1)
G[:, :n]) * np.diag(S_G[:n]) * np.matrix(Vt_G[:n, :])



B_compressed = np.matrix(U_B[:, :n]) * np.diag(S_B[:n]) * np.matrix(Vt_B[:n, :])

compressed_image = cv2.merge([np.clip(R_compressed, 1, 255), np.clip(G_compressed, 1, 255)
compressed_image = compressed_image.astype(np.uint8)

return compressed_image
n_values = [1, 5, 25]

plt.figure(figsize=(12, 6))

for i, n in enumerate(n_values):
plt.subplot(l, len(n_values), i+1)
plt.imshow(rgb_approximation(R, G, B, n))
plt.title('n = %s' % n)

plt.tight_layout()
plt.show()
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Singular values

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)
plot_singular_values(S_R, 'Singular Values (R)')

plt.subplot(2, 3, 2)
plot_singular_values(S_G, 'Singular Values (G)')

plt.subplot(2, 3, 3)
plot_singular_values(S_B, 'Singular Values (B)')

plt.subplot(2, 3, 4)
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plot_singular_values(S_R, 'Singular Values (log scale) (R)')
plt.yscale('log')

plt.subplot(2, 3, 5)
plot_singular_values(S_G, 'Singular Values (log scale) (G)')
plt.yscale('log')

plt.subplot(2, 3, 6)
plot_singular_values(S_B, 'Singular Values (log scale) (B)')
plt.yscale('log')

plt.tight_layout ()
plt.show()
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Individual components
First component:

UR, S_R, Vt_ R = np.linalg.svd(R, full matrices=False)
plot_uv(0, U=U_R, S=S_R, Vt=Vt_R)
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VAT (row vector extended down)
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Second component:

plot_uv(l, U=U_R, S=S_R, Vt=Vt_R)
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VAT (row vector extended down)
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Using “PCA” from sklearn

This is just an easier way to implement taking these first few
components...

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(R) # fit the model -- compute the matrices

transformed = pca.transform(R) # transform the data

print(f'The shape of the image is {R.shape}, and the shape of the compressed image is {transfo
plt.imshow(transformed.T)

The shape of the image is (168, 299), and the shape of the compressed image is (168, 2)

e e e e e e e e e e
0 20 40 60 80 100 120 140 160
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plt.imshow(pca.inverse_transform(transformed))
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Try adding noise...

alpha = 10
R_noisy = R + np.random.normal(0, 10, R.shape)*alpha
plt.imshow(R_noisy)
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Now clean it up with PCA:

pca = PCA(n_components=2)
pca.fit(R_noisy)
plt.imshow(pca.inverse_transform(pca.transform(R_noisy)))
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SVD in higher dimensions

Faces

from sklearn.datasets import fetch_lfw_people
faces = fetch_l1fw_people(min_faces_per_person=60)

# display a few of the faces, along with their names
fig, ax = plt.subplots(3, 4)
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],
xlabel=faces.target_names[faces.target[i]])

print (f'The shape of the faces dataset is {faces.images.shapel}')

The shape of the faces dataset is (1348, 62, 47)
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PCA on faces

pca = PCA(150, svd_solver='randomized', random_state=42)
pca_small = PCA(10, svd_solver='randomized', random_state=42)
pca_very_small = PCA(2, svd_solver='randomized', random_state=42)
pca.fit(faces.data)

pca_small.fit(faces.data)

pca_very_small.fit(faces.data)

PCA(n_components=2, random_state=42, svd_solver='randomized')

This treatment from here
fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i] .reshape(62, 47), cmap='bone')
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https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.09-Principal-Component-Analysis.ipynb

Reconstructions

# Compute the components and projected faces
pca = pca.fit(faces.data)

components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

components_small = pca_small.transform(faces.data)
projected_small = pca_small.inverse_transform(components_small)

components_very_small = pca_very_small.transform(faces.data)
projected_very_small = pca_very_small.inverse_transform(components_very_small)

# Plot the results
fig, ax = plt.subplots(4, 10, figsize=(10, 6.5),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0.1, wspace=0.1))
for i in range(10):
ax[0, i].imshow(faces.datal[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected_very_small[i].reshape(62, 47), cmap='binary_r')
ax[2, i].imshow(projected_small[i].reshape(62, 47), cmap='binary_r')
ax[3, i].imshow(projected[i] .reshape(62, 47), cmap='binary_r')

28



ax[0, 0].set_ylabel('full-dim\ninput')

ax[1, 0].set_ylabel('2-dim\nreconstruction');
ax[2, 0].set_ylabel('10-dim\nreconstruction');
ax[3, 0].set_ylabel('150-dim\nreconstruction');

HBE:
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CBEEEE PR
CBEEEERREL

full-dim
input

10-dim 2-dim
reconstruction reconstruction

150-dim
reconstruction

Really cool demo of SVD image compression: https://timbaumann.info/svd-
image-compression-demo/

Now you

Code up your own image compression using SVD and show
the left and right singular vectors, the singular values, and the
reconstructed images.

Share with the class!
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