Chb5 Lecture 5

How spread out is the data along a particular
direction?

Suppose we have n data points in p dimensions. We can repre-
sent the data as a matrix X of size n x p. The data points are
represented as rows in the matrix, and we have subtracted the

mean along each dimension from the data.

Visualizing the high-dimensional data

load in data from the cities91.csv file
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

cities = pd.read_csv('cities91.csv')
cities.head()

price_index_no_ rent

price_index_ with_ rent

KIDEN city region
0 Amsterdam91 Amsterdam Central Europe
1 Athenes91 Athens Southern Europe
2 Bogota91l Bogota South America
3 Bombay91 Mumbai South Asia and Australia
4 Bruxelles91 Brussels Central Europe

65.6
53.8
37.9
30.3
73.8

65.7
55.6
39.3
39.9
72.2

Dataset taken from here

https://pca4ds.github.io/data-and-goals.html

We might choose to focus on only 12 (!) of the 41 variables in
the dataset, corresponding to the average wages of workers in
12 specific occupations in each city.

select only second
cities_small = cities
cities_small.head()

and then last 12 columns
.iloc[:, [1] + list(range(29, 41))]

city teacher bus_driver mechanic construction_worker metalworker cook_chef factory 1
0 Amsterdam 15608.0 17819.0 11924.0 12661.0 14536.0 14402.0 25924.0
1 Athens 7972.0 9445.0 8574.0 9847.0 14402.0 14068.0 13800.0
2 Bogota 2144.0 2412.0 4354.0 1206.0 4823.0 13934.0 12192.0
3 Mumbai 1005.0 1340.0 1809.0 737.0 2479.0 2412.0 3751.0
4 Brussels 14001.0 14068.0 10450.0 12192.0 17350.0 19159.0 31016.0

How can we think about the data in this 12-dimensional

space?

Clouds of row-points

n

rows perspective

p-dimensional space

Clouds of column-points

~

columns perspective

n-dimensional space

Projection onto fewer dimensions
To visualize data, we need to project it onto 2d (or 3d) sub-
spaces. But which ones?

These are all equivalent:

e maximize variance of projected data

e minimize squared distances between data points and their
projections

e keep distances between points as similar as possible in
original vs projected space

Example in the space of column points

Orthogenal ~ Variables strongly
vafiable * correlated

7

Strong negative
correlation with x and y

Example

define the first column of the data as name labels, so that sklearn doesn't use them in the
cities_small = cities.iloc[:, [1] + list(range(29, 41))]
remove rows with NaN values

cities_small.set_index('city', inplace=True)

#names = cities_small['city'l]

#cities_small = cities_small.drop('city', axis=1)

standardize the data

cities_small = cities_small.dropna()

cities_small = (cities_small - cities_small.mean(axis=0))
cities_small = cities_small.dropna()

find the first two principal components of the data

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(cities_small)

cities_small_pca = pca.transform(cities_small)

plot the data in the new space, labeling each point with the city name
plt.scatter(cities_small_pcal:, 0], cities_small_pcal:, 1])

for i, city in enumerate(cities_small.index):

plt.text(cities_small pcali, 0], cities_small_pcali,

plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.show()

uenosAires
20000 - ¢ ‘:rankfug\lewYork

15000 A

10000 1 ; :

Second principal component

5000 A uxembourg
ghorantgok c*
oPaqu np,s‘s/clals nt@oky
0- eg"’ictren on .
5000 mﬁ ms %—I%?smkl]urlch
d\ Leoc oMﬂ&%aﬁgaea?o

~10000 1 @0sAngeles

éeneva

—40000 —20000 0 20000 40000 60000 80000
First principal component

Goal

We’d like to know in which directions in RP the data has the
highest variance.

Direction of maximum variance

To find the direction of maximum variance, we need to find the
unit vector u that maximizes u’ Cu.

i notes We start by finding the eigendecomposition of
the covariance matrix C: C = VAV,

V is a matrix whose columns are the eigenvectors of C, and A is
a diagonal matrix whose diagonal elements are the eigenvalues
of C.

(Note that these are simply the right singular vectors and sin-
gular values of the data matrix X.)

11, str(city))

Then we can express u in terms of the eigenvectors of C': u =
D . .

> i1 @;V;, where v, are the eigenvectors of C'. Because u is a

unit vector, the coefficients a; must sum to 1.

Now we have that Cu = 2?21 Cv,a; = Ele a;v;, where \; are
the eigenvalues of C.

T _ NP _ P

So then u’Cu =) i1 Gi05ViVy = > iim1 a;a;0; ;
P2y L
> g @A

v]| =

Which direction gives the maximum variance?

pause

The first principal component of a data matrix X is the eigen-
vector corresponding to the largest eigenvalue of the covariance
matrix of the data.

In terms of the singular value decomposition of X, the first
principal component is the first right singular vector of X:

Vl.

The variance of the data along each principal component is
given by the corresponding eigenvalue, or the square of the
corresponding singular value.

Example dataset: shopping baskets

load in the data from the url, using pandas
import pandas as pd

url = 'my_basket.csv'

food = pd.read_csv(url).T

name the first column 'name'

food.index.names=["'name ']
#food.set_index('name', inplace=True)
food.head ()

01 2 3 4 5 6 7 8 9 .. 1990 1991 1992 1993 1994 1995 1996 1997 1998

name
Tup 00 0 0 0 01 O0 0O 1 1 0 0 0 0 2 0 0
lasagna 0 0 0 0 O O 1 0 1 O 0 2 1 0 0 0 0 1 1
pepsi 00 0 0 0 0O OO0 O0 O 1 0 2 0 0 2 0 0 0
yop 000 2 00 O0O0O0O0 0 0 0 0 0 1 0 0 0
redwine 0 0 0 1 0 0 O O O O 0 0 0 0 2 2 0 0 0

The data consist of 2000 observations of 42 variables each! The
variables are the number of times each of 42 different food items
was purchased in a particular shopping trip.

Let’s try visualizing the data in a few of the dimensions of the
original space.

make a scatterplot of the first two columns in the original dataset
plt.scatter(food.iloc[0,:], food.iloc[1,:])

plt.xlabel (f 'Number of {food.index[0]} in basket')

plt.ylabel (f'Number of {food.index[1]} in basket')

calculate the number of observations where the first two coluimns both equal 2.0
increase the max x and max y by 0.5

plt.xlim(-.5, 4.5)

plt.ylim(-0.5, 4.5)

plt.title('Baskets of food')

plt.show()

Baskets of food

44 o
@
X
n
3
031 e o
©
C
(@)}
€24 ® ° o
ke
G
314 e ® °
£
>
=2
01 o ® ° °
0 1 2 3 4

Number of 7up in basket

make a scatterplot of the first two columns in the original dataset
def plot_food_scatter(food, x_col, y_col, ax2=None):
if ax2 is None:
no_ax_in = True
fig = plt.figure(figsize=(10,5))
ax2 = fig.add_subplot(111, projection='3d"')
else:
no_ax_in = False

yval = np.zeros([10,10])
for i in range(4):
for j in range(5):
yvalli,j] = sum((food.iloc[x_col, :] == i) & (food.iloc[y_col, :] == j))

xpos, ypos = np.meshgrid(range(4), range(5), indexing='ij"')
xpos = xpos.flatten()

ypos = ypos.flatten()

zpos = np.zeros_like(xpos)

dz = yvall[0:4, 0:5].flatten()

dx = dy = 0.5

ax2.bar3d(xpos, ypos, zpos, dx, dy, dz, shade=True)
plt.xlabel(f'# of {food.index[x_col]l}"')
plt.ylabel(f'# of {food.index[y_col]l}')

hide the ticks

ax2.set_xticks([])

ax2.set_yticks([])

make the spacing tight

if no_ax_in:
plt.show()

plot_food_scatter(food, 0, 1)

'[1200
T 1000
- 800
- 600
- 400
- 200

We can look at many combinations...

fig = plt.figure(figsize=(12,12))
for i in range(3):
for j in range(3):
ax = fig.add_subplot(3,3,3*i+j+1,projection="'3d")
plot_food_scatter(food, i, j, ax)
plt.tight_layout ()
plt.show()

Maybe we can learn more from the correlations?

make a heatmap of the correlations between the columns in the original dataset
plt.imshow(food.T.corr(), cmap='coolwarm', interpolation='none')
plt.xticks(range(42), food.index, rotation=90)

10

plt.yticks(range(42), food.index)
plt.colorbar()

plt.title('Correlations between foods')
plt.show()

Correlations between foods

1.0

0.8

- 0.6

- 0.4

- 0.2

0.0

a

RQale

1dC

2 ()

1 =]

W = S S gjﬂ-— = .
= £ E < o L0 55
o R
© U c < S © @ T
g SS ¥4 2o

O aM c

take just the first 10 foods

food_small = food.iloc[0:10]

set the range of the colormap to be -0.05 to 0.4

plt.imshow(food_small.T.corr(), cmap='coolwarm', interpolation='none', vmin=-0.05, vmax=0.4)
plt.xticks(range(10), food_small.index, rotation=90)

plt.yticks(range(10), food_small.index)

plt.colorbar()

plt.title('Correlations between foods')

plt.show()

11

Correlations between foods

0.40
7up 0.3
.35
lasagna
pepsi 0.30
yop - 0.25
red.wine - 0.20
cheese - 0.15
bbq - 0.10
bulmers 0.05
mayonnaise 0.00
horlics 0.05
5228235888 |
~gg>s g9y
n o S c© <
o GL.) © o o
)
€

OK, it looks like there are some patterns here. But it’s hard to
get a real sense for it.

Now perform PCA on the data.

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

standardize the data

scaler = StandardScaler()

food_scaled = scaler.fit_transform(food)

find the first four principal components of the data

pca = PCA(n_components=4)

pca.fit(food_scaled);

print(f'Explained variance %: {pca.explained_variance_ratio_*100}"')

Explained variance %: [8.82557343 8.3553662 7.7827148 5.81231417]

12

import plotly.express as px
import plotly.io as pio

plt.scatter(pca.components_[0], pca.components_[1])
plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.title('Individual food baskets')

plt.show()

Individual food baskets

0.04 -

0.02 A

0.00 A

—0.02 1

—0.04

Second principal component

—0.06 1

—0.04 -0.02 0.00 0.02 0.04 0.06
First principal component

pause

plt.scatter(pca.components_[2], pca.components_[3])
plt.xlabel('Third principal component')
plt.ylabel('Fourth principal component')
plt.title('Individual food baskets')

plt.show()

13

Individual food baskets

0.08 -

$ 0.06 -

C

(]

o

£ 0.04 -

[e]

(9]

3 0.02

19}

£

2 0.00 -

<

5

S —0.02 A
—0.04 A

-0.02 0.00 0.02 0.04 0.06
Third principal component

Meaning of the principal components

food_pca = pd.DataFrame(pca.transform(food_scaled))
food_pca.columns=["Principal Component 1","Principal Component 2","Principal Component 3","Pri:
food_pca.index = food.index

fig = px.scatter(food_pca, x="Principal Component 1", y="Principal Component 2" ,template="sim
fig.update_traces(textposition='top center')
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

plot just the first principal component
sort by the first principal component
def plot_by_pci(i):
food_sorted = food_pca.sort_values(by=f'Principal Component {i}')

14

fig=px.bar(food_sorted, x=f'Principal Component {i}', text=food_sorted.index, orientation='h
#fig.xticks (rotation=90)

#fig.ylabel ('Projection on first principal component')

fig.update_layout(yaxis={'visible': False, 'showticklabels': False}, xaxis={'visible': True,
fig.show()

plot_by_pci(1)

Unable to display output for mime type(s): text/html

plot_by_pci(2)

Unable to display output for mime type(s): text/html

Some real-world data

From here

def readAndProcessData():

Function to read the raw text file into a dataframe and keeping the population, gender

We also calculate the population mode for each attribute or trait (columns)
Note that mode is just the most frequently occuring trait

return: dataframe (df), modal traits (modes), population and gender for each individua

df = pd.read_csv('p4dataset2020.txt', header=None, delim_whitespace=True)
gender = df [1]

population = df[2]

print (np.unique(population))

15

https://github.com/sakshamg94/PCA-genome-data/blob/master/PCA_genomes.ipynb

df .drop(df.columns[[0, 1, 2]],axis=1,inplace=True)
modes = np.array(df.mode().values[O,:])
return df, modes, population, gender

df, modes, population, gender = readAndProcessDatal()

['ACB' 'ASW' 'ESN' 'GWD' 'LWK' 'MSL' 'YRI']

df .head ()

3 4 5 6 7 & 9 10 11 12 ... 10094 10095 10096 10097 10098 10099 10100 101
0 G G T TAATCA C ¢ T A T A A T T T
1 AA T T A G C A T T G C T G A T C T
2 A AT T A A G A C C G C T G A T C T
3 A AT C A A G A C C G A T G A T C T
4 G AT C G A C A C cC G C T G A T C T

def convertDfToMatrix(df, mode):

Create a binary matrix (binarized) representing mutations away from mode
Each row is for an individual, and each column is a trait

binarized_{i,j}= 0 if the $i"{th}$ individual has column
j’s mode nucleobase for his or her $j {th}$ nucleobase,

and binarized_{i,j}= 1 otherwise

raw_np = df.to_numpy ()

binarized = np.where(raw_np!=modes, 1, 0)
return binarized

16

X = pd.DataFrame (convertDfToMatrix(df, modes))
X.head ()

10091 10092 10093 10094 10095 10096 10097 10098 10(

O R == OO
OO OO O|N
O O = =W
_ 0 O O O
=== O = Ot
—_ O O = =IO
SO O OO
OO O = O
O O O = OO
_ === O

1
1
1
1
1

=~ w N = O
cCoo o |
O OO
oo oo
oo ooo
cococooo
oo oo
cocooo
cocoocoo

pca = PCA(n_components=6)
pca.fit(X);
#Data points projected along the principal components

projected = pca.transform(X)
projected = pd.DataFrame(projected)
projected.columns=map(lambda x: f'PC{x+1}', range(6))

append the population
projected['population'] = population
projected['gender'] = gender
projected.head()

PC1 PC2 PC3 PC4 PC5 PC6 population gender

4.789833 -0.902143 3.281937 -0.652120 -1.992695 0.158584 ACB 1
12.957428 2.341208 -0.569135 -3.536158 -1.889941 -1.524323 ACB
9.846580 0.635220 -1.189974 -2.050291 -1.576732 -1.533460 ACB
-0.338932 -0.746560 3.575658 0.580496 -0.612378 0.261069 ACB

w N = O
NN

17

PC1 PC2 PC3 PC4 PCh PC6 population gender
4 3.777742 0.500006 -2.632316 -1.205833 0.031286 -0.035984 ACB 2

fig = px.scatter(projected, x='PC3', y='PC4', template='simple_white')
fig.show()

Unable to display output for mime type(s): text/html

fig = px.scatter(projected, x='PC3', y='PC4', template='simple_white',color='gender')
fig.show()

Unable to display output for mime type(s): text/html

18

	How spread out is the data along a particular direction?
	Visualizing the high-dimensional data
	
	Clouds of row-points
	Clouds of column-points
	Projection onto fewer dimensions
	Example in the space of column points
	Example
	Goal
	Direction of maximum variance
	Which direction gives the maximum variance?
	Example dataset: shopping baskets
	
	
	
	
	
	
	
	
	Meaning of the principal components
	
	
	Some real-world data
	
	
	
	
	
	

