
Ch5 Lecture 5

How spread out is the data along a particular
direction?

Suppose we have n data points in p dimensions. We can repre-
sent the data as a matrix 𝑋 of size 𝑛 × 𝑝. The data points are
represented as rows in the matrix, and we have subtracted the
mean along each dimension from the data.

Visualizing the high-dimensional data

# load in data from the cities91.csv file
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
cities = pd.read_csv('cities91.csv')
cities.head()

KIDEN city region price_index_no_rent price_index_with_rent gross_salaries net_salaries work_hours_year paid_vacations_year gross_buying_power ... mechanic construction_worker metalworker cook_chef factory_manager engineer bank_clerk executive_secretary salesperson textile_worker
0 Amsterdam91 Amsterdam Central Europe 65.6 65.7 56.9 49.0 1714.0 31.9 86.7 ... 11924.0 12661.0 14536.0 14402.0 25924.0 24786.0 14871.0 14871.0 11857.0 10852.0
1 Athenes91 Athens Southern Europe 53.8 55.6 30.2 30.4 1792.0 23.5 56.1 ... 8574.0 9847.0 14402.0 14068.0 13800.0 14804.0 9914.0 6900.0 4555.0 5761.0
2 Bogota91 Bogota South America 37.9 39.3 10.1 11.5 2152.0 17.4 26.6 ... 4354.0 1206.0 4823.0 13934.0 12192.0 12259.0 2345.0 5024.0 2278.0 2814.0
3 Bombay91 Mumbai South Asia and Australia 30.3 39.9 6.0 5.3 2052.0 30.6 19.9 ... 1809.0 737.0 2479.0 2412.0 3751.0 2880.0 2345.0 1809.0 1072.0 1206.0
4 Bruxelles91 Brussels Central Europe 73.8 72.2 68.2 50.5 1708.0 24.6 92.4 ... 10450.0 12192.0 17350.0 19159.0 31016.0 24518.0 19293.0 13800.0 10718.0 10182.0

Dataset taken from here
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We might choose to focus on only 12 (!) of the 41 variables in
the dataset, corresponding to the average wages of workers in
12 specific occupations in each city.

# select only second and then last 12 columns
cities_small = cities.iloc[:, [1] + list(range(29, 41))]
cities_small.head()

city teacher bus_driver mechanic construction_worker metalworker cook_chef factory_manager engineer bank_clerk executive_secretary salesperson textile_worker
0 Amsterdam 15608.0 17819.0 11924.0 12661.0 14536.0 14402.0 25924.0 24786.0 14871.0 14871.0 11857.0 10852.0
1 Athens 7972.0 9445.0 8574.0 9847.0 14402.0 14068.0 13800.0 14804.0 9914.0 6900.0 4555.0 5761.0
2 Bogota 2144.0 2412.0 4354.0 1206.0 4823.0 13934.0 12192.0 12259.0 2345.0 5024.0 2278.0 2814.0
3 Mumbai 1005.0 1340.0 1809.0 737.0 2479.0 2412.0 3751.0 2880.0 2345.0 1809.0 1072.0 1206.0
4 Brussels 14001.0 14068.0 10450.0 12192.0 17350.0 19159.0 31016.0 24518.0 19293.0 13800.0 10718.0 10182.0

How can we think about the data in this 12-dimensional
space?

Clouds of row-points
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Clouds of column-points

Projection onto fewer dimensions

To visualize data, we need to project it onto 2d (or 3d) sub-
spaces. But which ones?

These are all equivalent:

• maximize variance of projected data

• minimize squared distances between data points and their
projections

• keep distances between points as similar as possible in
original vs projected space
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Example in the space of column points

Example

# define the first column of the data as name labels, so that sklearn doesn't use them in the fit
cities_small = cities.iloc[:, [1] + list(range(29, 41))]
# remove rows with NaN values

cities_small.set_index('city', inplace=True)
#names = cities_small['city']
#cities_small = cities_small.drop('city', axis=1)
# standardize the data
cities_small = cities_small.dropna()
cities_small = (cities_small - cities_small.mean(axis=0))
cities_small = cities_small.dropna()

# find the first two principal components of the data
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(cities_small)
cities_small_pca = pca.transform(cities_small)
# plot the data in the new space, labeling each point with the city name
plt.scatter(cities_small_pca[:, 0], cities_small_pca[:, 1])
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for i, city in enumerate(cities_small.index):
plt.text(cities_small_pca[i, 0], cities_small_pca[i, 1], str(city))

plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.show()
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Goal

We’d like to know in which directions in 𝑅𝑝 the data has the
highest variance.

Direction of maximum variance

To find the direction of maximum variance, we need to find the
unit vector u that maximizes u𝑇 𝐶u.

. . . ::: notes We start by finding the eigendecomposition of
the covariance matrix 𝐶: 𝐶 = 𝑉 Λ𝑉 𝑇 .

𝑉 is a matrix whose columns are the eigenvectors of 𝐶, and Λ is
a diagonal matrix whose diagonal elements are the eigenvalues
of 𝐶.

(Note that these are simply the right singular vectors and sin-
gular values of the data matrix 𝑋.)
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Then we can express u in terms of the eigenvectors of 𝐶: u =
∑𝑝

𝑖=1 𝑎𝑖v𝑖, where v𝑖 are the eigenvectors of 𝐶. Because u is a
unit vector, the coefficients 𝑎𝑖 must sum to 1.

Now we have that 𝐶u = ∑𝑝
𝑖=1 𝐶𝑣𝑖𝑎𝑖 = ∑𝑝

𝑖=1 𝑎𝑖𝑣𝑖, where 𝜆𝑖 are
the eigenvalues of 𝐶.

So then u𝑇 𝐶u = ∑𝑝
𝑖,𝑗=1 𝑎𝑖𝑎𝑗vjvj = ∑𝑝

𝑖,𝑗=1 𝑎𝑖𝑎𝑗𝛿𝑖,𝑗||𝑣𝑖||𝜆𝑖 =
∑𝑝

𝑖=1 𝑎2
𝑖 𝜆𝑖. :::

Which direction gives the maximum variance?

pause

. . .

The first principal component of a data matrix 𝑋 is the eigen-
vector corresponding to the largest eigenvalue of the covariance
matrix of the data.

In terms of the singular value decomposition of 𝑋, the first
principal component is the first right singular vector of 𝑋:

v1.

The variance of the data along each principal component is
given by the corresponding eigenvalue, or the square of the
corresponding singular value.

Example dataset: shopping baskets

# load in the data from the url, using pandas
import pandas as pd
url = 'my_basket.csv'
food = pd.read_csv(url).T
# name the first column 'name'

food.index.names=['name ']
#food.set_index('name', inplace=True)
food.head()
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0 1 2 3 4 5 6 7 8 9 ... 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
name
7up 0 0 0 0 0 0 1 0 0 0 ... 1 1 0 0 0 0 2 0 0 1
lasagna 0 0 0 0 0 0 1 0 1 0 ... 0 2 1 0 0 0 0 1 1 0
pepsi 0 0 0 0 0 0 0 0 0 0 ... 1 0 2 0 0 2 0 0 0 0
yop 0 0 0 2 0 0 0 0 0 0 ... 0 0 0 0 0 1 0 0 0 0
red.wine 0 0 0 1 0 0 0 0 0 0 ... 0 0 0 0 2 2 0 0 0 0

The data consist of 2000 observations of 42 variables each! The
variables are the number of times each of 42 different food items
was purchased in a particular shopping trip.

Let’s try visualizing the data in a few of the dimensions of the
original space.

. . .

# make a scatterplot of the first two columns in the original dataset
plt.scatter(food.iloc[0,:], food.iloc[1,:])
plt.xlabel(f'Number of {food.index[0]} in basket')
plt.ylabel(f'Number of {food.index[1]} in basket')
# calculate the number of observations where the first two coluimns both equal 2.0
# increase the max x and max y by 0.5
plt.xlim(-.5, 4.5)
plt.ylim(-0.5, 4.5)
plt.title('Baskets of food')
plt.show()
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# make a scatterplot of the first two columns in the original dataset
def plot_food_scatter(food, x_col, y_col, ax2=None):

if ax2 is None:
no_ax_in = True
fig = plt.figure(figsize=(10,5))
ax2 = fig.add_subplot(111, projection='3d')

else:
no_ax_in = False

yval = np.zeros([10,10])
for i in range(4):

for j in range(5):
yval[i,j] = sum((food.iloc[x_col, :] == i) & (food.iloc[y_col, :] == j))

xpos, ypos = np.meshgrid(range(4), range(5), indexing='ij')
xpos = xpos.flatten()
ypos = ypos.flatten()
zpos = np.zeros_like(xpos)
dz = yval[0:4, 0:5].flatten()
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dx = dy = 0.5
ax2.bar3d(xpos, ypos, zpos, dx, dy, dz, shade=True)
plt.xlabel(f'# of {food.index[x_col]}')
plt.ylabel(f'# of {food.index[y_col]}')
# hide the ticks
ax2.set_xticks([])
ax2.set_yticks([])
# make the spacing tight

if no_ax_in:
plt.show()

plot_food_scatter(food, 0, 1)
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We can look at many combinations…
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fig = plt.figure(figsize=(12,12))
for i in range(3):

for j in range(3):
ax = fig.add_subplot(3,3,3*i+j+1,projection='3d')
plot_food_scatter(food, i, j, ax)

plt.tight_layout()
plt.show()
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Maybe we can learn more from the correlations?

. . .

# make a heatmap of the correlations between the columns in the original dataset
plt.imshow(food.T.corr(), cmap='coolwarm', interpolation='none')
plt.xticks(range(42), food.index, rotation=90)
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plt.yticks(range(42), food.index)
plt.colorbar()
plt.title('Correlations between foods')
plt.show()
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# take just the first 10 foods
food_small = food.iloc[0:10]
# set the range of the colormap to be -0.05 to 0.4
plt.imshow(food_small.T.corr(), cmap='coolwarm', interpolation='none', vmin=-0.05, vmax=0.4)
plt.xticks(range(10), food_small.index, rotation=90)
plt.yticks(range(10), food_small.index)
plt.colorbar()
plt.title('Correlations between foods')
plt.show()
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. . .

OK, it looks like there are some patterns here. But it’s hard to
get a real sense for it.

Now perform PCA on the data.

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# standardize the data
scaler = StandardScaler()
food_scaled = scaler.fit_transform(food)
# find the first four principal components of the data
pca = PCA(n_components=4)
pca.fit(food_scaled);
print(f'Explained variance %: {pca.explained_variance_ratio_*100}')

Explained variance %: [8.82557343 8.3553662 7.7827148 5.81231417]
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import plotly.express as px
import plotly.io as pio

plt.scatter(pca.components_[0], pca.components_[1])
plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.title('Individual food baskets')
plt.show()
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pause

plt.scatter(pca.components_[2], pca.components_[3])
plt.xlabel('Third principal component')
plt.ylabel('Fourth principal component')
plt.title('Individual food baskets')
plt.show()
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Meaning of the principal components

food_pca = pd.DataFrame(pca.transform(food_scaled))
food_pca.columns=["Principal Component 1","Principal Component 2","Principal Component 3","Principal Component 4"]
food_pca.index = food.index

fig = px.scatter(food_pca, x="Principal Component 1", y="Principal Component 2" ,template="simple_white", text=food.index)
fig.update_traces(textposition='top center')
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

# plot just the first principal component
# sort by the first principal component
def plot_by_pci(i):

food_sorted = food_pca.sort_values(by=f'Principal Component {i}')
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fig=px.bar(food_sorted, x=f'Principal Component {i}', text=food_sorted.index, orientation='h',color=f'Principal Component {np.mod(i+2,2)+1}', template='simple_white')
#fig.xticks(rotation=90)
#fig.ylabel('Projection on first principal component')
fig.update_layout(yaxis={'visible': False, 'showticklabels': False}, xaxis={'visible': True, 'showticklabels': True})
fig.show()

plot_by_pci(1)

Unable to display output for mime type(s): text/html

plot_by_pci(2)

Unable to display output for mime type(s): text/html

Some real-world data

From here

def readAndProcessData():
"""

Function to read the raw text file into a dataframe and keeping the population, gender separate from the genetic data

We also calculate the population mode for each attribute or trait (columns)
Note that mode is just the most frequently occuring trait

return: dataframe (df), modal traits (modes), population and gender for each individual row
"""

df = pd.read_csv('p4dataset2020.txt', header=None, delim_whitespace=True)
gender = df[1]
population = df[2]
print(np.unique(population))
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df.drop(df.columns[[0, 1, 2]],axis=1,inplace=True)
modes = np.array(df.mode().values[0,:])
return df, modes, population, gender

df, modes, population, gender = readAndProcessData()

['ACB' 'ASW' 'ESN' 'GWD' 'LWK' 'MSL' 'YRI']

df.head()

3 4 5 6 7 8 9 10 11 12 ... 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103
0 G G T T A A C A C C ... T A T A A T T T G A
1 A A T T A G C A T T ... G C T G A T C T G G
2 A A T T A A G A C C ... G C T G A T C T G G
3 A A T C A A G A C C ... G A T G A T C T G G
4 G A T C G A C A C C ... G C T G A T C T G G

. . .

def convertDfToMatrix(df, mode):
"""

Create a binary matrix (binarized) representing mutations away from mode
Each row is for an individual, and each column is a trait

binarized_{i,j}= 0 if the $i^{th}$ individual has column
$j$’s mode nucleobase for his or her $j^{th}$ nucleobase,
and binarized_{i,j}= 1 otherwise

"""

raw_np = df.to_numpy()
binarized = np.where(raw_np!=modes, 1, 0)
return binarized
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X = pd.DataFrame(convertDfToMatrix(df, modes))
X.head()

0 1 2 3 4 5 6 7 8 9 ... 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
0 0 1 0 1 0 1 1 0 0 0 ... 0 1 1 1 0 0 1 0 0 1
1 1 0 0 1 0 0 1 0 1 1 ... 1 0 1 0 0 0 0 0 0 0
2 1 0 0 1 0 1 0 0 0 0 ... 1 0 1 0 0 0 0 0 0 0
3 1 0 0 0 0 1 0 0 0 0 ... 1 1 1 0 0 0 0 0 0 0
4 0 0 0 0 1 1 1 0 0 0 ... 1 0 1 0 0 0 0 0 0 0

pca = PCA(n_components=6)
pca.fit(X);
#Data points projected along the principal components

projected = pca.transform(X)
projected = pd.DataFrame(projected)
projected.columns=map(lambda x: f'PC{x+1}', range(6))

# append the population
projected['population'] = population
projected['gender'] = gender
projected.head()

PC1 PC2 PC3 PC4 PC5 PC6 population gender
0 4.789833 -0.902143 3.281937 -0.652120 -1.992695 0.158584 ACB 1
1 12.957428 2.341208 -0.569135 -3.536158 -1.889941 -1.524323 ACB 2
2 9.846580 0.635220 -1.189974 -2.050291 -1.576732 -1.533460 ACB 2
3 -0.338932 -0.746560 3.575658 0.580496 -0.612378 0.261069 ACB 1
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PC1 PC2 PC3 PC4 PC5 PC6 population gender
4 3.777742 0.500006 -2.632316 -1.205833 0.031286 -0.035984 ACB 2

fig = px.scatter(projected, x='PC3', y='PC4', template='simple_white')
fig.show()

Unable to display output for mime type(s): text/html

fig = px.scatter(projected, x='PC3', y='PC4', template='simple_white',color='gender')
fig.show()

Unable to display output for mime type(s): text/html
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