Review

Review

Chapter 1: Linear Systems

Linear Systems (ch1Lecture1b, ch1Lecture2)

  • Applications of linear systems
  • Putting linear systems in matrix form
  • *Gauss-Jordan to get to row echelon form
  • *Solving linear systems with augmented matrices
  • Free vs bound variables
  • Ill-conditioned systems & rounding errors

Getting to row echelon form: \left[\begin{array}{rrr} 1 & 1 & 5 \\ 0 & -3 & -9 \end{array}\right] \overrightarrow{E_{2}(-1 / 3)}\left[\begin{array}{lll} 1 & 1 & 5 \\ 0 & 1 & 3 \end{array}\right] \overrightarrow{E_{12}(-1)}\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 1 & 3 \end{array}\right] .

Augmented matrix to solve linear system:

\begin{aligned} z & =2 \\ x+y+z & =2 \\ 2 x+2 y+4 z & =8 \end{aligned}

Augmented matrix:

\left[\begin{array}{llll} 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 4 & 8 \end{array}\right] \stackrel{E_{12}}{\longrightarrow}\left[\begin{array}{llll} (1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 2 & 2 & 4 & 8 \end{array}\right] \xrightarrow[E_{31}(-2)]{\longrightarrow}\left[\begin{array}{rlll} 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{array}\right]

We keep on going… \begin{aligned} & {\left[\begin{array}{rrrr} (1) & 1 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{array}\right] \xrightarrow[E_{2}(1 / 2)]{\longrightarrow}\left[\begin{array}{rrrr} 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{array}\right]} \\ & \overrightarrow{E_{32}(-1)}\left[\begin{array}{rrrr} (1) & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right] \xrightarrow[E_{12}(-1)]{\longrightarrow}\left[\begin{array}{rrrr} (1) & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right] . \end{aligned}

There’s still no information on y.

\begin{aligned} & x=-y \\ & z=2 \\ & y \text { is free. } \end{aligned}

Chapter 2: Matrices

Matrix multiplication (ch2Lecture1)

  • Matrix-vector multiplication as a linear combination of columns
  • Matrix multiplication as an operation
  • *Scaling, rotation, shear

Scaling and rotation

To rotate a vector by \theta:

=\left[\begin{array}{rr} \cos \theta &-\sin \theta \\ \sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{l} r \cos \phi \\ r \sin \phi \end{array}\right]=\left[\begin{array}{rr} \cos \theta&-\sin \theta \\ \sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]

Scaling:

A = \left[\begin{array}{ll} z_1 & 0 \\ 0 & z_2 \end{array}\right]

Shearing: adding a constant shear factor times one coordinate to another coordinate of the point. A = \left[\begin{array}{ll} 1 & s_2 \\ s_1 & 1 \end{array}\right]

Graphs and Directed Graphs (ch2Lecture2)

  • *Adjacency and incidence matrices
  • Degree of a vertex
  • *Paths and cycles
  • PageRank

Adjacency and incidence matrices

Adjacency matrix: A square matrix whose (i, j) th entry is the number of edges going from vertex i to vertex j

Incidence matrix: A matrix whose rows correspond to vertices and columns correspond to edges. The (i, j) th entry is 1 if vertex i is the tail of edge j, -1 if it is the head, and 0 otherwise.

Paths and cycles

  • Number of paths of length n from vertex i to vertex j is the (i, j) th entry of the matrix A^{n}.
  • Vertex power is the sum of the entries in the ith row of A+A^{2}.
  • In an the incidence matrix of a digraph which is a cycle, every row must sum to zero.

Discrete Dynamical Systems (Ch2Lecture2)

  • Transition matrices
  • *Markov chains

Markov Chains

A distribution vector is a vector whose entries are nonnegative and sum to 1.

A stochastic matrix is a square matrix whose columns are distribution vectors.

A Markov chain is a discrete dynamical system whose initial state \mathbf{x}^{(0)} is a distribution vector and whose transition matrix A is stochastic, i.e., each column of A is a distribution vector.

Difference Equations (Ch2Lecture3)

  • *Difference equations in matrix form
  • *Examples

Difference Equation in Matrix Form

From HW2: put ths difference equation in matrix form:

y_{k+2}-y_{k+1}-y_{k}=0

Steps: 1. Make two equations. Solve for y_{k+2}: y_{k+2}=y_{k+1}+y_{k}. Also of course y_{k+1}=y_{k+1}. 2. Define the vector \mathbf{y}^{(k)}=\left[\begin{array}{l} y_{k} \\ y_{k+1} \end{array}\right] 3. Put the two equations in matrix form: . . .

\left[\begin{array}{l}y_{k+1} \\ y_{k+2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}y_{k} \\ y_{k+1}\end{array}\right]

Examples of difference equations

Reaction-diffusion:

a_{x,t+1} = a_{x,t} + dt\left( \frac{D_{a}}{dx^{2}}(a_{x+1,t} + a_{x-1,t} - 2a_{x,t}) \right)

Heat in a rod: \begin{equation*} -y_{i-1}+2 y_{i}-y_{i+1}=\frac{h^{2}}{K} f\left(x_{i}\right) \end{equation*}

MCMC (Ch2 lecture 4)

  • MCMC
    • Simulate a distribution using a Markov chain
    • Sample from the simulated distribution
  • Restricted Boltzmann Machines

Inverses and determinants (Ch2 lecture 4 & 5)

  • Inverse of a matrix
  • *Determinants
  • Singularity
  • LU factorization

Determinants

The determinant of a square n \times n matrix A=\left[a_{i j}\right], \operatorname{det} A, is defined recursively:

If n=1 then \operatorname{det} A=a_{11};

otherwise,

  • suppose we have determinents for all square matrices of size less than n
  • Define M_{i j}(A) as the determinant of the (n-1) \times(n-1) matrix obtained from A by deleting the i th row and j th column of A

then

\begin{aligned} \operatorname{det} A & =\sum_{k=1}^{n} a_{k 1}(-1)^{k+1} M_{k 1}(A) \\ & =a_{11} M_{11}(A)-a_{21} M_{21}(A)+\cdots+(-1)^{n+1} a_{n 1} M_{n 1}(A) \end{aligned}

Laws of Determinants

  • D1: If A is an upper triangular matrix, then the determinant of A is the product of all the diagonal elements of A.
  • D2: If B is obtained from A by multiplying one row of A by the scalar c, then \operatorname{det} B=c \cdot \operatorname{det} A.
  • D3: If B is obtained from A by interchanging two rows of A, then \operatorname{det} B= -\operatorname{det} A.
  • D4: If B is obtained from A by adding a multiple of one row of A to another row of A, then \operatorname{det} B=\operatorname{det} A.
  • D5: The matrix A is invertible if and only if \operatorname{det} A \neq 0.
  • D6: Given matrices A, B of the same size, \operatorname{det} A B=\operatorname{det} A \operatorname{det} B \text {. }
  • D7: For all square matrices A, \operatorname{det} A^{T}=\operatorname{det} A

Chapter 3: Vector Spaces

Spaces of matrices (ch3 lecture 1)

  • Basis
  • Fundamental subspaces:
    • Column space
    • Null space
    • Row space
  • Rank
  • Consistency

Column and Row Spaces

The column space of the m \times n matrix A is the subspace \mathcal{C}(A) of \mathbb{R}^{m} spanned by the columns of A.

The row space of the m \times n matrix A is the subspace \mathcal{R}(A) of \mathbb{R}^{n} spanned by the transposes of the rows of A

A basis for the column space of A is the set of pivot columns of A. (Find these by row reducing A and choosing the columns with leading 1s)

Null Space

The null space of the m \times n matrix A is the subset \mathcal{N}(A) of \mathbb{R}^{n}

\mathcal{N}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}

\mathcal{N}(A) is just the solution set to A \mathbf{x}=\mathbf{0}

For example, if A is invertible, A \mathbf{x}=\mathbf{0} has only the trivial solution \mathbf{x}=\mathbf{0}

so \mathcal{N}(A) is just \left\{\mathbf{0}\right\}.

A is invertible exactly if \mathcal{N}(A)=\{\mathbf{0}\}

Finding a basis for the null space

Given an m \times n matrix A.

  1. Compute the reduced row echelon form R of A.

  2. Use R to find the general solution to the homogeneous system A \mathbf{x}=0.

  1. Write the general solution \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) to the homogeneous system in the form

\mathbf{x}=x_{i_{1}} \mathbf{w}_{1}+x_{i_{2}} \mathbf{w}_{2}+\cdots+x_{i_{n-r}} \mathbf{w}_{n-r}

where x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-r}} are the free variables.

  1. List the vectors \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-r}. These form a basis of \mathcal{N}(A).

Using the Null Space

  • The general solution to A \mathbf{x}=\mathbf{b} is \mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h} where \mathbf{x}_{p} is a particular solution and \mathbf{x}_{h} is in the null space of A.
  • The null space of A is orthogonal to the row space of A (or the column space of A^{T}. The dot product of any vector in the null space of A with any vector in the row space of A is 0.)

Chapter 4: Geometrical Aspects of Standard Spaces

Orthogonality (ch4 lecture 1 and 2)

  • Geometrical intuitions
  • *Least Squares & Normal equations
  • Finding orthogonal bases (Gram-Schmidt)

Least Squares and Normal Equations

To find the least squares solution to A \mathbf{x}=\mathbf{b}, we minimize the squared error \left\|A \mathbf{x}-\mathbf{b}\right\|^{2} by solving the Normal Equations for \mathbf{x}: \begin{aligned} \mathbf{A}^{T} \mathbf{A} \mathbf{x} &=\mathbf{A}^{T} \mathbf{b} \end{aligned}

QR Factorization

If A is an m \times n full-column-rank matrix, then A=Q R, where the columns of the m \times n matrix Q are orthonormal vectors and the n \times n matrix R is upper triangular with nonzero diagonal entries.

  1. Start with the columns of A, A=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right]. (For now assume they are linearly independent.)
  2. Do Gram-Schmidt on the columns of A to get orthonormal vectors \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}.

A=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right]=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right]\left[\begin{array}{ccc} 1 & \frac{\mathbf{q}_{1} \cdot \mathbf{w}_{2}}{\mathbf{q}_{1} \cdot \mathbf{q}_{1}} & \frac{\mathbf{q}_{1} \cdot \mathbf{w}_{3}}{\mathbf{q}_{1} \cdot \mathbf{q}_{1}} \\ 0 & 1 & \frac{\mathbf{q}_{2} \cdot \mathbf{w}_{3}}{\mathbf{q}_{2} \cdot \mathbf{q}_{2}} \\ 0 & 0 & 1 \end{array}\right]

Chapter 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors (ch5 lecture 1)

  • Definition
  • *How to find them
  • Similarity and Diagonalization
  • Applications to dynamical systems
  • Spectral radius

Finding Eigenvalues and Eigenvectors

If A is a square n \times n matrix, the equation \operatorname{det}(\lambda I-A)=0 is called the characteristic equation of A

The eigenvalues of A are the roots of the characteristic equation.

For each scalar \lambda in (1), use the null space algorithm to find a basis of the eigenspace \mathcal{N}(\lambda I-A).

Symmetric matrices (ch5 lecture 2)

  • Properties of symmetric matrices
  • Quadratic forms

SVD (ch5 lecture 3, 4)

  • Definition
  • *Psuedoinverse
  • Applications to least squares
  • Image compression

Pseudoinverse

The pseudoinverse of A is A^{+}=V S^+ U^{T}

S^{+} is the matrix with the reciprocals of the non-zero singular values on the diagonal, and zeros elsewhere.

Can find least squares solutions:

\begin{aligned} A x & =b \\ x & \approx A^{+} b \end{aligned}

PCA (ch5 lecture 5)

  • Definition
  • Applications to data analysis

Chapter 6: Fourier Transform

Fourier Transform (ChNone, Ch6 lecture 1)