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Chapter 1: Linear Systems

Linear Systems (ch1Lecture1b, ch1Lecture2)

• Applications of linear systems
• Putting linear systems in matrix form
• *Gauss-Jordan to get to row echelon form
• *Solving linear systems with augmented matrices
• Free vs bound variables
• Ill-conditioned systems & rounding errors

Getting to row echelon form:

[ 1 1 5
0 −3 −9 ] ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝐸2(−1/3) [ 1 1 5

0 1 3 ] ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸12(−1) [ 1 0 2
0 1 3 ] .

Augmented matrix to solve linear system:

𝑧 = 2
𝑥 + 𝑦 + 𝑧 = 2

2𝑥 + 2𝑦 + 4𝑧 = 8
. . .

Augmented matrix:
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⎡⎢
⎣

0 0 1 2
1 1 1 2
2 2 4 8

⎤⎥
⎦

𝐸12⟶ ⎡⎢
⎣

(1 1 1 2
0 0 1 2
2 2 4 8

⎤⎥
⎦

⟶−−−−−→
𝐸31(−2)

⎡⎢
⎣

1 1 1 2
0 0 2 4
0 0 1 2

⎤⎥
⎦

We keep on going…

⎡⎢
⎣

(1) 1 1 2
0 0 2 4
0 0 1 2

⎤⎥
⎦

⟶−−−−→
𝐸2(1/2)

⎡⎢
⎣

1 1 1 2
0 0 1 2
0 0 1 2

⎤⎥
⎦

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸32(−1) ⎡⎢
⎣

(1) 1 1 2
0 0 1 2
0 0 0 0

⎤⎥
⎦

⟶−−−−−→
𝐸12(−1)

⎡⎢
⎣

(1) 1 0 0
0 0 1 2
0 0 0 0

⎤⎥
⎦

.

There’s still no information on 𝑦.

𝑥 = −𝑦
𝑧 = 2
𝑦 is free.

Chapter 2: Matrices

Matrix multiplication (ch2Lecture1)

• Matrix-vector multiplication as a linear combination of columns
• Matrix multiplication as an operation
• *Scaling, rotation, shear

Scaling and rotation

To rotate a vector by 𝜃:

= [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] [ 𝑟 cos𝜙

𝑟 sin𝜙 ] = [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] [ 𝑥

𝑦 ]

. . .
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Scaling:

𝐴 = [ 𝑧1 0
0 𝑧2

]

Shearing: adding a constant shear factor times one coordinate to another coordinate of the
point.

𝐴 = [ 1 𝑠2
𝑠1 1 ]

Graphs and Directed Graphs (ch2Lecture2)

• *Adjacency and incidence matrices
• Degree of a vertex
• *Paths and cycles
• PageRank

Adjacency and incidence matrices

Adjacency matrix: A square matrix whose (𝑖, 𝑗) th entry is the number of edges going from
vertex 𝑖 to vertex 𝑗
Incidence matrix: A matrix whose rows correspond to vertices and columns correspond
to edges. The (𝑖, 𝑗) th entry is 1 if vertex 𝑖 is the tail of edge 𝑗, -1 if it is the head, and 0
otherwise.

Paths and cycles

• Number of paths of length 𝑛 from vertex 𝑖 to vertex 𝑗 is the (𝑖, 𝑗) th entry of the matrix
𝐴𝑛.

• Vertex power is the sum of the entries in the 𝑖𝑡ℎ row of 𝐴 + 𝐴2.
• In an the incidence matrix of a digraph which is a cycle, every row must sum to zero.

Discrete Dynamical Systems (Ch2Lecture2)

• Transition matrices
• *Markov chains
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Markov Chains

A distribution vector is a vector whose entries are nonnegative and sum to 1.

A stochastic matrix is a square matrix whose columns are distribution vectors.

A Markov chain is a discrete dynamical system whose initial state x(0) is a distribution vector
and whose transition matrix 𝐴 is stochastic, i.e., each column of 𝐴 is a distribution vector.

Difference Equations (Ch2Lecture3)

• *Difference equations in matrix form
• *Examples

Difference Equation in Matrix Form

From HW2: put ths difference equation in matrix form:

𝑦𝑘+2 − 𝑦𝑘+1 − 𝑦𝑘 = 0

. . .

Steps: 1. Make two equations. Solve for 𝑦𝑘+2: 𝑦𝑘+2 = 𝑦𝑘+1 + 𝑦𝑘. Also of course 𝑦𝑘+1 = 𝑦𝑘+1.

2. Define the vector y(𝑘) = [ 𝑦𝑘
𝑦𝑘+1

] 3. Put the two equations in matrix form: . . .

[ 𝑦𝑘+1
𝑦𝑘+2

] = [ 0 1
1 1 ] [ 𝑦𝑘

𝑦𝑘+1
]

Examples of difference equations

Reaction-diffusion:

𝑎𝑥,𝑡+1 = 𝑎𝑥,𝑡 + 𝑑𝑡 ( 𝐷𝑎
𝑑𝑥2 (𝑎𝑥+1,𝑡 + 𝑎𝑥−1,𝑡 − 2𝑎𝑥,𝑡))

Heat in a rod:
−𝑦𝑖−1 + 2𝑦𝑖 − 𝑦𝑖+1 = ℎ2

𝐾 𝑓 (𝑥𝑖)
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MCMC (Ch2 lecture 4)

• MCMC

– Simulate a distribution using a Markov chain
– Sample from the simulated distribution

• Restricted Boltzmann Machines

Inverses and determinants (Ch2 lecture 4 & 5)

• Inverse of a matrix
• *Determinants
• Singularity
• LU factorization

Determinants

The determinant of a square 𝑛 × 𝑛 matrix 𝐴 = [𝑎𝑖𝑗], det𝐴, is defined recursively:

If 𝑛 = 1 then det𝐴 = 𝑎11;

otherwise,

• suppose we have determinents for all square matrices of size less than 𝑛
• Define 𝑀𝑖𝑗(𝐴) as the determinant of the (𝑛 − 1) × (𝑛 − 1) matrix obtained from 𝐴 by

deleting the 𝑖 th row and 𝑗 th column of 𝐴

then

det𝐴 =
𝑛

∑
𝑘=1

𝑎𝑘1(−1)𝑘+1𝑀𝑘1(𝐴)

= 𝑎11𝑀11(𝐴) − 𝑎21𝑀21(𝐴) + ⋯ + (−1)𝑛+1𝑎𝑛1𝑀𝑛1(𝐴)

Laws of Determinants

• D1: If 𝐴 is an upper triangular matrix, then the determinant of 𝐴 is the product of all
the diagonal elements of 𝐴.

• D2: If 𝐵 is obtained from 𝐴 by multiplying one row of 𝐴 by the scalar 𝑐, then det𝐵 =
𝑐 ⋅ det𝐴.

• D3: If 𝐵 is obtained from 𝐴 by interchanging two rows of 𝐴, then det𝐵 = − det𝐴.
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• D4: If 𝐵 is obtained from 𝐴 by adding a multiple of one row of 𝐴 to another row of 𝐴,
then det𝐵 = det𝐴.

• D5: The matrix 𝐴 is invertible if and only if det𝐴 ≠ 0.
• D6: Given matrices 𝐴, 𝐵 of the same size, det𝐴𝐵 = det𝐴det𝐵.
• D7: For all square matrices 𝐴, det𝐴𝑇 = det𝐴

Chapter 3: Vector Spaces

Spaces of matrices (ch3 lecture 1)

• Basis
• Fundamental subspaces:

– Column space
– Null space
– Row space

• Rank
• Consistency

Column and Row Spaces

The column space of the 𝑚×𝑛 matrix 𝐴 is the subspace 𝒞(𝐴) of ℝ𝑚 spanned by the columns
of 𝐴.

The row space of the 𝑚 × 𝑛 matrix 𝐴 is the subspace ℛ(𝐴) of ℝ𝑛 spanned by the transposes
of the rows of 𝐴
. . .

A basis for the column space of 𝐴 is the set of pivot columns of 𝐴. (Find these by row reducing
𝐴 and choosing the columns with leading 1s)

Null Space

The null space of the 𝑚 × 𝑛 matrix 𝐴 is the subset 𝒩(𝐴) of ℝ𝑛

𝒩(𝐴) = {x ∈ ℝ𝑛 ∣ 𝐴x = 0}

. . .

𝒩(𝐴) is just the solution set to 𝐴x = 0
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. . .

For example, if 𝐴 is invertible, 𝐴x = 0 has only the trivial solution x = 0

. . .

so 𝒩(𝐴) is just {0}.
. . .

𝐴 is invertible exactly if 𝒩(𝐴) = {0}

Finding a basis for the null space

Given an 𝑚 × 𝑛 matrix 𝐴.

1. Compute the reduced row echelon form 𝑅 of 𝐴.

2. Use 𝑅 to find the general solution to the homogeneous system 𝐴x = 0.

. . .

3. Write the general solution x = (𝑥1, 𝑥2, … , 𝑥𝑛) to the homogeneous system in the form

. . .

x = 𝑥𝑖1
w1 + 𝑥𝑖2

w2 + ⋯ + 𝑥𝑖𝑛−𝑟
w𝑛−𝑟

where 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑛−𝑟
are the free variables.

. . .

4. List the vectors w1, w2, … , w𝑛−𝑟. These form a basis of 𝒩(𝐴).

Using the Null Space

• The general solution to 𝐴x = b is x = x𝑝 + xℎ where x𝑝 is a particular solution and xℎ
is in the null space of 𝐴.

• The null space of 𝐴 is orthogonal to the row space of 𝐴 (or the column space of 𝐴𝑇 . The
dot product of any vector in the null space of 𝐴 with any vector in the row space of 𝐴
is 0.)
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Chapter 4: Geometrical Aspects of Standard Spaces

Orthogonality (ch4 lecture 1 and 2)

• Geometrical intuitions
• *Least Squares & Normal equations
• Finding orthogonal bases (Gram-Schmidt)

Least Squares and Normal Equations

To find the least squares solution to 𝐴x = b, we minimize the squared error ‖𝐴x − b‖2 by
solving the Normal Equations for x:

A𝑇 Ax = A𝑇 b

QR Factorization

If 𝐴 is an 𝑚 × 𝑛 full-column-rank matrix, then 𝐴 = 𝑄𝑅, where the columns of the 𝑚 × 𝑛
matrix 𝑄 are orthonormal vectors and the 𝑛 × 𝑛 matrix 𝑅 is upper triangular with nonzero
diagonal entries.

1. Start with the columns of A, 𝐴 = [w1, w2, w3]. (For now assume they are linearly
independent.)

2. Do Gram-Schmidt on the columns of 𝐴 to get orthonormal vectors q1, q2, q3.

. . .

𝐴 = [w1, w2, w3] = [q1, q2, q3] ⎡
⎢
⎣

1 q1⋅w2
q1⋅q1

q1⋅w3
q1⋅q1

0 1 q2⋅w3
q2⋅q2

0 0 1
⎤
⎥
⎦

Chapter 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors (ch5 lecture 1)

• Definition
• *How to find them
• Similarity and Diagonalization
• Applications to dynamical systems
• Spectral radius
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Finding Eigenvalues and Eigenvectors

If 𝐴 is a square 𝑛 × 𝑛 matrix, the equation det(𝜆𝐼 − 𝐴) = 0 is called the characteristic
equation of 𝐴
The eigenvalues of 𝐴 are the roots of the characteristic equation.

For each scalar 𝜆 in (1), use the null space algorithm to find a basis of the eigenspace 𝒩(𝜆𝐼 −
𝐴).

Symmetric matrices (ch5 lecture 2)

• Properties of symmetric matrices
• Quadratic forms

SVD (ch5 lecture 3, 4)

• Definition
• *Psuedoinverse
• Applications to least squares
• Image compression

Pseudoinverse

The pseudoinverse of 𝐴 is 𝐴+ = 𝑉 𝑆+𝑈𝑇

𝑆+ is the matrix with the reciprocals of the non-zero singular values on the diagonal, and zeros
elsewhere.

. . .

Can find least squares solutions:

𝐴𝑥 = 𝑏
𝑥 ≈ 𝐴+𝑏

PCA (ch5 lecture 5)

• Definition
• Applications to data analysis
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Chapter 6: Fourier Transform

Fourier Transform (ChNone, Ch6 lecture 1)
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