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Chapter 1: Linear Systems

Linear Systems (chllLecturelb, chllecture2)

o Applications of linear systems

e Putting linear systems in matrix form

o *Gauss-Jordan to get to row echelon form

o *Solving linear systems with augmented matrices
e Free vs bound variables

e Ill-conditioned systems & rounding errors

Getting to row echelon form:
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Augmented matrix to solve linear system:

z=2
z+y+z=2
20+ 2y + 42 =8

Augmented matrix:
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There’s still no information on .

r=—y
z=2
y is free.

Chapter 2: Matrices

Matrix multiplication (ch2Lecturel)

e Matrix-vector multiplication as a linear combination of columns
o Matrix multiplication as an operation
o *Scaling, rotation, shear

Scaling and rotation

To rotate a vector by 6:
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Scaling:

A [ z 0 ]
0 2
Shearing: adding a constant shear factor times one coordinate to another coordinate of the
point.
A— 1 s
s; 1

Graphs and Directed Graphs (ch2Lecture2)

¢ *Adjacency and incidence matrices
e Degree of a vertex

o *Paths and cycles

¢ PageRank

Adjacency and incidence matrices

Adjacency matrix: A square matrix whose (i, 7) th entry is the number of edges going from
vertex ¢ to vertex j

Incidence matrix: A matrix whose rows correspond to vertices and columns correspond
to edges. The (i,7) th entry is 1 if vertex i is the tail of edge j, -1 if it is the head, and 0
otherwise.

Paths and cycles

o Number of paths of length n from vertex i to vertex j is the (i, j) th entry of the matrix
A",

o Vertex power is the sum of the entries in the ith row of A + A2.

e In an the incidence matrix of a digraph which is a cycle, every row must sum to zero.

Discrete Dynamical Systems (Ch2Lecture2)

e Transition matrices
o *Markov chains



Markov Chains

A distribution vector is a vector whose entries are nonnegative and sum to 1.

A stochastic matrix is a square matrix whose columns are distribution vectors.

A Markov chain is a discrete dynamical system whose initial state x(?) is a distribution vector

and whose transition matrix A is stochastic, i.e., each column of A is a distribution vector.

Difference Equations (Ch2Lecture3)

« *Difference equations in matrix form
o *Examples

Difference Equation in Matrix Form

From HW2: put ths difference equation in matrix form:

Ypr2 = Ypt1 — Y =0

Steps: 1. Make two equations. Solve for y, . o: Yp o = Ypyq1 + Yi- Also of course v, 1 = Ypyq-

2. Define the vector y¥) = [ zk } 3. Put the two equations in matrix form: . . .
k+1

EIREHIEN
Y12 L1 Yr+1
Examples of difference equations

Reaction-diffusion:

D
a:c,tJrl = aac,t + dt <d7x(12<am+1,t + amfl,t - 2ax,t>>

Heat in a rod:
h2
Y1+ 2y, — Y1 = ?f ()



MCMC (Ch2 lecture 4)

o MCMC

— Simulate a distribution using a Markov chain
— Sample from the simulated distribution

e Restricted Boltzmann Machines

Inverses and determinants (Ch2 lecture 4 & 5)

¢ Inverse of a matrix
¢ *Determinants
Singularity

e LU factorization

Determinants

The determinant of a square n X n matrix A = [aij], det A, is defined recursively:
If n =1 then det A = a;;

otherwise,

e suppose we have determinents for all square matrices of size less than n
o Define M;;(A) as the determinant of the (n — 1) x (n — 1) matrix obtained from A by
deleting the ¢ th row and j th column of A

then

det A = "ay, (—1)"1M,, (A)
k=1

= ay M1 (A) — ay; My (A) + -+ (_1)n+1an1Mnl<A>

Laws of Determinants

e DI1: If A is an upper triangular matrix, then the determinant of A is the product of all
the diagonal elements of A.

e D2: If B is obtained from A by multiplying one row of A by the scalar ¢, then det B =
c-det A.

e D3: If B is obtained from A by interchanging two rows of A, then det B = — det A.



e D4: If B is obtained from A by adding a multiple of one row of A to another row of A,
then det B = det A.

o D5: The matrix A is invertible if and only if det A # 0.

e DG6: Given matrices A, B of the same size, det AB = det A det B.

o D7: For all square matrices A, det AT = det A

Chapter 3: Vector Spaces

Spaces of matrices (ch3 lecture 1)

o Basis
¢ Fundamental subspaces:

— Column space
— Null space
— Row space

o Rank
o Consistency

Column and Row Spaces

The column space of the m x n matrix A is the subspace C(A) of R” spanned by the columns
of A.

The row space of the m x n matrix A is the subspace K(A) of R™ spanned by the transposes
of the rows of A

A basis for the column space of A is the set of pivot columns of A. (Find these by row reducing
A and choosing the columns with leading 1s)

Null Space

The null space of the m x n matrix A is the subset N (A) of R™

N(A) = {x € R" | Ax = 0}

N (A) is just the solution set to Ax =0



For example, if A is invertible, Ax = 0 has only the trivial solution x = 0
so N(A) is just {0}.

A is invertible exactly if N (A) = {0}

Finding a basis for the null space

Given an m X n matrix A.

1. Compute the reduced row echelon form R of A.

2. Use R to find the general solution to the homogeneous system Ax = 0.

3. Write the general solution x = (z, %y, ..., z,,) to the homogeneous system in the form

X =x; Wy + T; Wy + -+ r; W

e n—r

where z; ,x; ;...

,x; are the free variables.
n—r

4. List the vectors wy,ws,...,w, .. These form a basis of NV (A).

Using the Null Space

¢ The general solution to Ax = b is x = x,, + x;, where x,, is a particular solution and x;,
is in the null space of A.
 The null space of A is orthogonal to the row space of A (or the column space of AT. The

dot product of any vector in the null space of A with any vector in the row space of A
is 0.)



Chapter 4: Geometrical Aspects of Standard Spaces

Orthogonality (ch4 lecture 1 and 2)

e Geometrical intuitions
o *Least Squares & Normal equations
o Finding orthogonal bases (Gram-Schmidt)

Least Squares and Normal Equations

To find the least squares solution to Ax = b, we minimize the squared error |Ax — bH2 by
solving the Normal Equations for x:

ATAx = ATb

QR Factorization

If Ais an m x n full-column-rank matrix, then A = QR, where the columns of the m x n
matrix () are orthonormal vectors and the n x n matrix R is upper triangular with nonzero
diagonal entries.

1. Start with the columns of A, A = [w,,w,, ws]. (For now assume they are linearly
independent.)
2. Do Gram-Schmidt on the columns of A to get orthonormal vectors q;, qs, q;.

1 91" Wy q:"W3
919 q;-9;
qz W3

A=[wy, Wy, W3] = [q,d9,q3] | 0 1 d2°qy
0 0 1

Chapter 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors (ch5 lecture 1)

Definition

*How to find them

Similarity and Diagonalization
Applications to dynamical systems
Spectral radius



Finding Eigenvalues and Eigenvectors

If A is a square n X n matrix, the equation det(A] — A) = 0 is called the characteristic
equation of A

The eigenvalues of A are the roots of the characteristic equation.

For each scalar A in (1), use the null space algorithm to find a basis of the eigenspace N (Al —
A).

Symmetric matrices (chb lecture 2)

e Properties of symmetric matrices
¢ Quadratic forms

SVD (ch5 lecture 3, 4)

e Definition

« *Psuedoinverse

o Applications to least squares
¢ Image compression

Pseudoinverse

The pseudoinverse of A is AT = VSTUT

S+ is the matrix with the reciprocals of the non-zero singular values on the diagonal, and zeros
elsewhere.

Can find least squares solutions:

Ax =b
x~ Atb

PCA (ch5 lecture 5)

¢ Definition
e Applications to data analysis



Chapter 6: Fourier Transform

Fourier Transform (ChNone, Ch6 lecture 1)
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