

Review

Review

Chapter 1: Linear Systems

Linear Systems (ch1Lecture1b, ch1Lecture2)

- Applications of linear systems
- Putting linear systems in matrix form
- *Gauss-Jordan to get to row echelon form
- *Solving linear systems with augmented matrices
- Free vs bound variables
- Ill-conditioned systems & rounding errors

Getting to row echelon form:

$$\left[\begin{array}{ccc} 1 & 1 & 5 \\ 0 & -3 & -9 \end{array} \right] \xrightarrow{E_2(-1/3)} \left[\begin{array}{ccc} 1 & 1 & 5 \\ 0 & 1 & 3 \end{array} \right] \xrightarrow{E_{12}(-1)} \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 3 \end{array} \right].$$

Augmented matrix to solve linear system:

$$z = 2$$

$$x + y + z = 2$$

$$2x + 2y + 4z = 8$$

...

Augmented matrix:

$$\left[\begin{array}{cccc} 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 4 & 8 \end{array} \right] \xrightarrow{E_{12}} \left[\begin{array}{cccc} (1) & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 2 & 2 & 4 & 8 \end{array} \right] \xrightarrow{E_{31}(-2)} \left[\begin{array}{cccc} 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{array} \right]$$

We keep on going...

$$\left[\begin{array}{cccc} (1) & 1 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{array} \right] \xrightarrow{E_2(1/2)} \left[\begin{array}{cccc} 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{array} \right]$$

$$\xrightarrow{E_{32}(-1)} \left[\begin{array}{cccc} (1) & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right] \xrightarrow{E_{12}(-1)} \left[\begin{array}{cccc} (1) & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

There's still no information on y .

$$x = -y$$

$$z = 2$$

y is free.

Chapter 2: Matrices

Matrix multiplication (ch2Lecture1)

- Matrix-vector multiplication as a linear combination of columns
- Matrix multiplication as an operation
- *Scaling, rotation, shear

Scaling and rotation

To rotate a vector by θ :

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

...

Scaling:

$$A = \begin{bmatrix} z_1 & 0 \\ 0 & z_2 \end{bmatrix}$$

Shearing: adding a constant shear factor times one coordinate to another coordinate of the point.

$$A = \begin{bmatrix} 1 & s_2 \\ s_1 & 1 \end{bmatrix}$$

Graphs and Directed Graphs (ch2Lecture2)

- *Adjacency and incidence matrices
- Degree of a vertex
- *Paths and cycles
- PageRank

Adjacency and incidence matrices

Adjacency matrix: A square matrix whose (i, j) th entry is the number of edges going from vertex i to vertex j

Incidence matrix: A matrix whose rows correspond to vertices and columns correspond to edges. The (i, j) th entry is 1 if vertex i is the tail of edge j , -1 if it is the head, and 0 otherwise.

Paths and cycles

- Number of paths of length n from vertex i to vertex j is the (i, j) th entry of the matrix A^n .
- Vertex power is the sum of the entries in the i th row of $A + A^2$.
- In an the incidence matrix of a digraph which is a cycle, every row must sum to zero.

Discrete Dynamical Systems (Ch2Lecture2)

- Transition matrices
- *Markov chains

Markov Chains

A **distribution vector** is a vector whose entries are nonnegative and sum to 1.

A **stochastic matrix** is a square matrix whose columns are distribution vectors.

A **Markov chain** is a discrete dynamical system whose initial state $\mathbf{x}^{(0)}$ is a distribution vector and whose transition matrix A is stochastic, i.e., each column of A is a distribution vector.

Difference Equations (Ch2Lecture3)

- *Difference equations in matrix form
- *Examples

Difference Equation in Matrix Form

From HW2: put this difference equation in matrix form:

$$y_{k+2} - y_{k+1} - y_k = 0$$

...

Steps: 1. Make two equations. Solve for y_{k+2} : $y_{k+2} = y_{k+1} + y_k$. Also of course $y_{k+1} = y_{k+1}$.
2. Define the vector $\mathbf{y}^{(k)} = \begin{bmatrix} y_k \\ y_{k+1} \end{bmatrix}$ 3. Put the two equations in matrix form: . . .

$$\begin{bmatrix} y_{k+1} \\ y_{k+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} y_k \\ y_{k+1} \end{bmatrix}$$

Examples of difference equations

Reaction-diffusion:

$$a_{x,t+1} = a_{x,t} + dt \left(\frac{D_a}{dx^2} (a_{x+1,t} + a_{x-1,t} - 2a_{x,t}) \right)$$

Heat in a rod:

$$-y_{i-1} + 2y_i - y_{i+1} = \frac{h^2}{K} f(x_i)$$

MCMC (Ch2 lecture 4)

- MCMC
 - Simulate a distribution using a Markov chain
 - Sample from the simulated distribution
- Restricted Boltzmann Machines

Inverses and determinants (Ch2 lecture 4 & 5)

- Inverse of a matrix
- *Determinants
- Singularity
- LU factorization

Determinants

The **determinant** of a square $n \times n$ matrix $A = [a_{ij}]$, $\det A$, is defined recursively:

If $n = 1$ then $\det A = a_{11}$;

otherwise,

- suppose we have determinants for all square matrices of size less than n
- Define $M_{ij}(A)$ as the determinant of the $(n - 1) \times (n - 1)$ matrix obtained from A by deleting the i th row and j th column of A

then

$$\begin{aligned}\det A &= \sum_{k=1}^n a_{k1}(-1)^{k+1} M_{k1}(A) \\ &= a_{11}M_{11}(A) - a_{21}M_{21}(A) + \cdots + (-1)^{n+1}a_{n1}M_{n1}(A)\end{aligned}$$

Laws of Determinants

- D1: If A is an upper triangular matrix, then the determinant of A is the product of all the diagonal elements of A .
- D2: If B is obtained from A by multiplying one row of A by the scalar c , then $\det B = c \cdot \det A$.
- D3: If B is obtained from A by interchanging two rows of A , then $\det B = -\det A$.

- D4: If B is obtained from A by adding a multiple of one row of A to another row of A , then $\det B = \det A$.
- D5: The matrix A is invertible if and only if $\det A \neq 0$.
- D6: Given matrices A, B of the same size, $\det AB = \det A \det B$.
- D7: For all square matrices A , $\det A^T = \det A$

Chapter 3: Vector Spaces

Spaces of matrices (ch3 lecture 1)

- Basis
- Fundamental subspaces:
 - Column space
 - Null space
 - Row space
- Rank
- Consistency

Column and Row Spaces

The **column space** of the $m \times n$ matrix A is the subspace $\mathcal{C}(A)$ of \mathbb{R}^m spanned by the columns of A .

The **row space** of the $m \times n$ matrix A is the subspace $\mathcal{R}(A)$ of \mathbb{R}^n spanned by the transposes of the rows of A

...

A basis for the column space of A is the set of pivot columns of A . (Find these by row reducing A and choosing the columns with leading 1s)

Null Space

The **null space** of the $m \times n$ matrix A is the subset $\mathcal{N}(A)$ of \mathbb{R}^n

$$\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$$

...

$\mathcal{N}(A)$ is just the solution set to $A\mathbf{x} = \mathbf{0}$

For example, if A is invertible, $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$

so $\mathcal{N}(A)$ is just $\{\mathbf{0}\}$.

A is invertible exactly if $\mathcal{N}(A) = \{\mathbf{0}\}$

Finding a basis for the null space

Given an $m \times n$ matrix A .

1. Compute the reduced row echelon form R of A .
2. Use R to find the general solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$.
3. Write the general solution $\mathbf{x} = (x_1, x_2, \dots, x_n)$ to the homogeneous system in the form

$$\mathbf{x} = x_{i_1} \mathbf{w}_1 + x_{i_2} \mathbf{w}_2 + \cdots + x_{i_{n-r}} \mathbf{w}_{n-r}$$

where $x_{i_1}, x_{i_2}, \dots, x_{i_{n-r}}$ are the free variables.

4. List the vectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{n-r}$. These form a basis of $\mathcal{N}(A)$.

Using the Null Space

- The general solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ where \mathbf{x}_p is a particular solution and \mathbf{x}_h is in the null space of A .
- The null space of A is orthogonal to the row space of A (or the column space of A^T . The dot product of any vector in the null space of A with any vector in the row space of A is 0.)

Chapter 4: Geometrical Aspects of Standard Spaces

Orthogonality (ch4 lecture 1 and 2)

- Geometrical intuitions
- *Least Squares & Normal equations
- Finding orthogonal bases (Gram-Schmidt)

Least Squares and Normal Equations

To find the least squares solution to $A\mathbf{x} = \mathbf{b}$, we minimize the squared error $\|A\mathbf{x} - \mathbf{b}\|^2$ by solving the Normal Equations for \mathbf{x} :

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

QR Factorization

If A is an $m \times n$ full-column-rank matrix, then $A = QR$, where the columns of the $m \times n$ matrix Q are orthonormal vectors and the $n \times n$ matrix R is upper triangular with nonzero diagonal entries.

1. Start with the columns of A , $A = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3]$. (For now assume they are linearly independent.)
2. Do Gram-Schmidt on the columns of A to get orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$.

...

$$A = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3] = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3] \begin{bmatrix} 1 & \frac{\mathbf{q}_1 \cdot \mathbf{w}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1} & \frac{\mathbf{q}_1 \cdot \mathbf{w}_3}{\mathbf{q}_1 \cdot \mathbf{q}_1} \\ 0 & 1 & \frac{\mathbf{q}_2 \cdot \mathbf{w}_3}{\mathbf{q}_2 \cdot \mathbf{q}_2} \\ 0 & 0 & 1 \end{bmatrix}$$

Chapter 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors (ch5 lecture 1)

- Definition
- *How to find them
- Similarity and Diagonalization
- Applications to dynamical systems
- Spectral radius

Finding Eigenvalues and Eigenvectors

If A is a square $n \times n$ matrix, the equation $\det(\lambda I - A) = 0$ is called the **characteristic equation** of A

The eigenvalues of A are the roots of the characteristic equation.

For each scalar λ in (1), use the null space algorithm to find a basis of the eigenspace $\mathcal{N}(\lambda I - A)$.

Symmetric matrices (ch5 lecture 2)

- Properties of symmetric matrices
- Quadratic forms

SVD (ch5 lecture 3, 4)

- Definition
- *Pseudoinverse
- Applications to least squares
- Image compression

Pseudoinverse

The **pseudoinverse** of A is $A^+ = VS^+U^T$

S^+ is the matrix with the reciprocals of the non-zero singular values on the diagonal, and zeros elsewhere.

...

Can find least squares solutions:

$$\begin{aligned} Ax &= b \\ x &\approx A^+b \end{aligned}$$

PCA (ch5 lecture 5)

- Definition
- Applications to data analysis

Chapter 6: Fourier Transform

Fourier Transform (ChNone, Ch6 lecture 1)