Ch2 Lecture 4

MCMC
Idea of MCMC
Restricted Boltzmann Machine

Intro to the idea of a Restricted Boltzmann Machine

Math of the RBM

From https://ml-
lectures.org/docs/unsupervised_ learning/ml_unsuper
1.html

States are determined by an energy function E(v,h).

E(v,h) = _Zaivi - ijhj - Zviwijhj
i J (]

Then the probability distribution is given by the Boltzmann
distribution:

Pim(v,h) = Le BVP) where Z = >y ne E(v,h)

The probability of a visible vector v is given by marginalizing
over the hidden variables:

rbm Z bm \E h Z

h

Conveniently, this gives each visible unit an independent
probability of activation:

P, (v, —1|h)—a(a +Z g J), i=1,..,n,

The same is true for hidden units, given the visible units:

Py (h;=1v) =0 (bj + Zvinj) ji=1,...,n,

Training
Consider a set of binary input data x,,k = 1,..., M, drawn
from a probability distribution Py, (x).

Goal: tune the parameters {a, b, W} such that after training
Prbm <X> ~ Pdata<x>'

To do this, we need to be able to estimate P,

Unfortunately, this is often intractable, because it requires cal-
culating the partition function Z.

Details of the training

We want to maximize the log-likelihood of the data under the
model:

L(a,b,W) Zlog b (X5e)

Take derivatives of this with respect to the parameters, and use
gradient descent:

OL(@.b, W) _ _ 5~ 0log Py, (1)

oW = oWy

The derivative has two terms:

0 log Prbm (X)

8W¢j — rbm h _1|X ZUZ Tbm h _1|V> rbm(v)

Use this to update the weights:

OL(a,b, W)
oW,

ij

Wi = Wi —n

Problem: the second term in the derivative is intractable! It
has 2™v terms:

Zv Py (h = 1|v) Py (v)

v

Instead, we will use Gibbs sampling to estimate P, (V).

Gibbs sampling to the rescue

Input: Any visible vector v(0)

Output: Visible vector v(r)

for: n =1\ dots r

sampleh(n) from P, (hv =v(n—1))
sample v(n) from P, (vh =h(n)) end

Using an RBM

original

. RBM mput/ wM output

il A

LU Factorization

Gibbs
sampling

Suppose we want to solve a nonsingular linear system Ax = b
repeatedly, with different choices of b.

Wi W2 s W i)

To T T2 T3 T4 Ty Xe

h? .
—Yi1 + 2yz Y41 = ?f ($z> U= 17 27 ey n

Perhaps you want to experiment with different functions for
the heat source term.

What do we do? Each time, we create the augmented matrix
A = [A] b], then get it into reduced row echelon form.

Each time change b, we have to redo all the work of Gaussian
or Gauss-Jordan elimination !

Especially frustrating because the main part of our work is the
same: putting the part of A corresponding to the coefficient
matrix A into reduced row echelon form.

LU Factorization: Saving that work

Goal: Find a way to record our work on A, so that solving a
new system involves very little additional work.

LU Factorization: Let A be an n X n matrix. An LU factoriza-
tion of A is a pair of n x n matrices L, U such that

1. L is lower triangular.
2. U is upper triangular.
3. A=LU.

Why is this so wonderful? Triangular systems Ax = b are easy
to solve.

Remember: If A is upper triangular, we can solve for the last
variable, then the next-to-last variable, etc.

Solving an upper triangular system

Let’s say we have the following system:

Axr = b where A is the upper-triangular matrix A =
21 0 1
0 1 —1]|, and we want to solve forb= | 1 |.
0 0 —1 —2
21 0 | 1
We form the augmented matrix A = [A|b] = |0 1 —1 | 1 |.
00 —1 | —2
Back substitution:
1. Last equation: —z5 = —2, so 3 = 2.
2. Substitute this value into the second equation, zo—z3 = 1,
SO Ty = 3.
3. Finally, we substitute z, and x5 into the first equation,
2z, +x9=1,50 x; = —1.

Solving a lower triangular system

If A is lower triangular, we can solve for the first variable, then
the second variable, etc.

Let’s say we have the following system:

Ay = b where A is the lower-triangular matrix A =
1 00 1
-1 1 0] , and we want to solve for b = !O} .
1 21 1
_ 1 00 | 1
We form the augmented matrix A = [A[b] = {—1 1 0 | 0] :
1 21| 1

Forward substitution:

1. First equation: y; = 1.

2. Substitute this value into the second equation, —y; +y, =
0, so y, = 1.

3. Finally, we substitute y; and y, into the third equation,
Y1+ 2y +yz3=1,50y3 = =2.

This was just as easy as solving the upper triangular system!

Solving Az = b with LU factorization

Now suppose we want to solve Ax = b and we know that A =
LU. The original system becomes LUz = b.

Introduce an intermediate variable y = Uz. Our system is now
Ly = b. Now perform these steps:

1. Forward solve: Solve lower triangular system Ly = b
for the variable y.

2. Back solve: Solve upper triangular system Ux = y for
the variable x.

3. This does it!

Once we have the matrices L, U, the right-hand sides only come
when solving the two triangular systems. Easy!

Example

You are given that

21 0 1 00 2 1 0
-2 0 -1 |=]-1120 01 —1].
2 3 =3 1 21 0 0 —1

1
Solve this system for b = [O] .

A:

1

Forward solve:

1007wy 1
1 10]|]|wl|=]0
12 1] |y 1

y; = 1, then y, =041y, =1, then y3 =1 —1y; — 2y, = —2.

21 07[1

xqg = —2/(—1) = 2, then z, = 1 + z3 = 3, then

Back solve:

When we can do LU factorization

e Not all square matrices have LU factorizations! This one

. | 0 1
doesnt.[1 0}

o If Gaussian elimination can be performed on the matrix A
without row exchanges, then the factorization exists

— (it’s really a by-product of Gaussian elimination.)

o If row exchanges are needed, there is still a factorization
that will work, but it’s a bit more complicated.

Intuition behind LU factorization
Example

Here we do Gaussian elimination on the matrix A =

2 1 0
-2 0 —-1):

O =
[

R
—_

Let’s put those elementary row operations into matrix form.
There were three of them:

100
1. By (1) : [1 1 0]

0 01

1 0 0]
2. Eq(—1): |0 1 0
-1 0 1]
10 0]
3. Egp(—2): |0 1 0
0 —2 1]

The inverses of these matrices are
1 00 1 00 1 00
1. |—-1 1 0f, |0 1 Of,and |O 1 0].
0 01 1 01 0 21

The product of all these matrices is

1 0 0][1 0 0] 0 O 1 0 0
0 1 01 1 0f{|0 1 0]=11 1 0
-1 0 110 0 1] [0 =2 1 -1 -2 1

This is a lower triangular matrix, and it is the inverse of the
matrix we used to do Gaussian elimination.

We can also see that the entries below the diagonal are the
negatives of the multipliers we used in the elimination steps.

How to Compute an LU Factorization (no row swaps)

Algorithm:

1. Start with U := A and L := I (identity matrix).

2. For each pivot column k=1,...,.n— 1:

e Foreachrowi=k+1,...,n:

— Compute the multiplier: £,;, := U, /Uy

— Update the row in U: subtract ¢;;, times row k
from row ¢

— Store the multiplier in L: set L, := {;,

3. At the end, U is upper triangular, L is unit lower trian-
gular, and A = LU.

Note: If a pivot Uy, is zero (or you decide to swap rows), you
need a permutation matrix: PA = LU (see PLU factorization
section below).

This is exactly what “store the multipliers as you go” means.

Steps to LU factorization

Let [a,(if-)] be the matrix obtained from A after using the k th
pivot to clear out entries below it.

(The original matrix is A = [a(-q)])
All the row operations we will use include ratios (—aij / ajj).

The row-adding elementary operations are of the form

1oy (_“5‘?)/ “y;‘))

We can give these ratios a name: multipliers.

m;; = —ag?/a;’;), where i > j

If Gaussian elimination is used without row exchanges on the
nonsingular matrix A, resulting in the upper triangular matrix
U, and if L is the unit lower triangular matrix whose entries
below the diagonal are the negatives of the multipliers m, ;, then

A=1LU.

17

10

Storing the multipliers as we go
For efficiency, we can just “store” the multipliers in the lower

triangular part of the matrix on the left as we go along, since
that will be zero anyways.

2 1 07 4 2 1 071 2 1 0
{—20—1]#[—1 (1) —1}—_>[—11—1].

2 3 -3 1 2 -1

Now we read off the results from the final matrix:

1 00 21 0
L = 11 0| andU=|01 —1

-1 2 1 0 0 —1

Superaugmented matrix

Could we just keep track by using the superaugmented matrix,
like we did last lecture? What would that look like?

pause

101007 Fal) (210 100 — 210 1 00
20-1010| —— |[01-11 10| —>|01-11 10
23-3001]) gy (-1) Lo2-3-101) B2 LlO0-1-3-21

Our superaugmented matrix does become an upper triangular
matrix on the left and a lower triangular matrix on the right.

Unfortunately, the lower triangular matrix on the right is f/_l,
not L.

So we can’t just read off L and U from the superaugmented
matrix.

11

PLU factorization

What if we need row exchanges?

Now
ces:

We could start off by doing all the row-exchanging ele-
mentary operations that we need, and store the product
of these row-exchanging matrices as a matrix P.

This product is called a permutation matrix

Applying the correct permuatation matrix P to A, we
get a matrix for which Gaussian elimination will succeed
without further row exchanges.

we have a theorem that applies to all nonsingular matri-

If A is a nonsingular matrix, then there exists a permutation
matrix P, upper triangular matrix U, and unit lower triangular
matrix L such that PA = LU.

So, if you’ve got a nonsingular matrix A, you can always find
a permutation matrix P, an upper triangular matrix U, and a
unit lower triangular matrix L that satisfy PA = LU. Pretty

neat,

huh?

12

	MCMC
	Idea of MCMC

	Restricted Boltzmann Machine
	Intro to the idea of a Restricted Boltzmann Machine
	Math of the RBM
	
	
	Training
	Details of the training
	
	Gibbs sampling to the rescue
	Using an RBM

	LU Factorization
	
	LU Factorization: Saving that work
	Solving an upper triangular system
	Solving a lower triangular system
	Solving A x = b with LU factorization
	Example
	When we can do LU factorization
	Intuition behind LU factorization
	Example
	
	How to Compute an LU Factorization (no row swaps)
	Steps to LU factorization
	Storing the multipliers as we go
	Superaugmented matrix
	PLU factorization

