
Ch2 Lecture 4

MCMC

Idea of MCMC

Restricted Boltzmann Machine

Intro to the idea of a Restricted Boltzmann Machine

Math of the RBM

From https://ml-
lectures.org/docs/unsupervised_learning/ml_unsupervised-
1.html

. . .

States are determined by an energy function 𝐸(v, h).

𝐸(v, h) = − ∑
𝑖

𝑎𝑖𝑣𝑖 − ∑
𝑗

𝑏𝑗ℎ𝑗 − ∑
𝑖𝑗

𝑣𝑖𝑊𝑖𝑗ℎ𝑗

. . .

1

Then the probability distribution is given by the Boltzmann
distribution:

𝑃rbm(v, h) = 1
𝑍 𝑒−𝐸(v,h) where 𝑍 = ∑v,h 𝑒−𝐸(v,h)

The probability of a visible vector v is given by marginalizing
over the hidden variables:

𝑃rbm(v) = ∑
h

𝑃rbm(v, h) = 1
𝑍 ∑

ℎ
𝑒−𝐸(v,h)

Conveniently, this gives each visible unit an independent
probability of activation:

𝑃rbm (𝑣𝑖 = 1|h) = 𝜎 (𝑎𝑖 + ∑
𝑗

𝑊𝑖𝑗ℎ𝑗) , 𝑖 = 1, … , 𝑛v

The same is true for hidden units, given the visible units:

𝑃rbm (ℎ𝑗 = 1|v) = 𝜎 (𝑏𝑗 + ∑
𝑖

𝑣𝑖𝑊𝑖𝑗) 𝑗 = 1, … , 𝑛h

Training

Consider a set of binary input data x𝑘, 𝑘 = 1, … , 𝑀 , drawn
from a probability distribution 𝑃data (x).
Goal: tune the parameters {a, b, 𝑊} such that after training
𝑃rbm(x) ≈ 𝑃data(x).
. . .

To do this, we need to be able to estimate 𝑃rbm!

Unfortunately, this is often intractable, because it requires cal-
culating the partition function 𝑍.

2

Details of the training

We want to maximize the log-likelihood of the data under the
model:

𝐿(a, b, 𝑊) = −
𝑀

∑
𝑘=1

log 𝑃rbm (x𝑘)

. . .

Take derivatives of this with respect to the parameters, and use
gradient descent:

𝜕𝐿(a, b, 𝑊)
𝜕𝑊𝑖𝑗

= −
𝑀

∑
𝑘=1

𝜕 log 𝑃rbm (x𝑘)
𝜕𝑊𝑖𝑗

The derivative has two terms:

𝜕 log 𝑃rbm(x)
𝜕𝑊𝑖𝑗

= 𝑥𝑖𝑃rbm (ℎ𝑗 = 1|x)−∑
v

𝑣𝑖𝑃rbm (ℎ𝑗 = 1|v) 𝑃rbm(v)

. . .

Use this to update the weights:

𝑊𝑖𝑗 → 𝑊𝑖𝑗 − 𝜂𝜕𝐿(𝑎, 𝑏, 𝑊)
𝜕𝑊𝑖𝑗

Problem: the second term in the derivative is intractable! It
has 2𝑛v terms:

∑
v

𝑣𝑖𝑃rbm (ℎ𝑗 = 1|v) 𝑃rbm(v)

Instead, we will use Gibbs sampling to estimate 𝑃rbm(v).

3

Gibbs sampling to the rescue

Input: Any visible vector v(0)
Output: Visible vector v(𝑟)
for: 𝑛 = 1\ dots 𝑟
sample h(𝑛) from 𝑃rbm(hv = v(𝑛 − 1))
sample v(𝑛) from 𝑃rbm(vh = h(𝑛)) end

Using an RBM

LU Factorization

Suppose we want to solve a nonsingular linear system 𝐴𝑥 = 𝑏
repeatedly, with different choices of 𝑏.

. . .

4

−𝑦𝑖−1 + 2𝑦𝑖 − 𝑦𝑖+1 = ℎ2

𝐾 𝑓 (𝑥𝑖) , 𝑖 = 1, 2, … , 𝑛

. . .

Perhaps you want to experiment with different functions for
the heat source term.

. . .

What do we do? Each time, we create the augmented matrix
𝐴 = [𝐴 ∣ 𝑏], then get it into reduced row echelon form.

. . .

Each time change 𝑏, we have to redo all the work of Gaussian
or Gauss-Jordan elimination !

. . .

Especially frustrating because the main part of our work is the
same: putting the part of 𝐴 corresponding to the coefficient
matrix 𝐴 into reduced row echelon form.

LU Factorization: Saving that work

Goal: Find a way to record our work on 𝐴, so that solving a
new system involves very little additional work.

LU Factorization: Let 𝐴 be an 𝑛 × 𝑛 matrix. An LU factoriza-
tion of 𝐴 is a pair of 𝑛 × 𝑛 matrices 𝐿, 𝑈 such that

1. 𝐿 is lower triangular.
2. 𝑈 is upper triangular.
3. 𝐴 = 𝐿𝑈 .

. . .

Why is this so wonderful? Triangular systems 𝐴x = b are easy
to solve.

Remember: If 𝐴 is upper triangular, we can solve for the last
variable, then the next-to-last variable, etc.

5

Solving an upper triangular system

Let’s say we have the following system:

𝐴𝑥 = 𝑏 where A is the upper-triangular matrix 𝐴 =
⎡⎢
⎣

2 1 0
0 1 −1
0 0 −1

⎤⎥
⎦

, and we want to solve for 𝑏 = ⎡⎢
⎣

1
1

−2
⎤⎥
⎦

.

. . .

We form the augmented matrix 𝐴 = [𝐴|𝑏] = ⎡⎢
⎣

2 1 0 | 1
0 1 −1 | 1
0 0 −1 | −2

⎤⎥
⎦

.

. . .

Back substitution:

1. Last equation: −𝑥3 = −2, so 𝑥3 = 2.
2. Substitute this value into the second equation, 𝑥2−𝑥3 = 1,

so 𝑥2 = 3.
3. Finally, we substitute 𝑥2 and 𝑥3 into the first equation,

2𝑥1 + 𝑥2 = 1, so 𝑥1 = −1.

Solving a lower triangular system

If 𝐴 is lower triangular, we can solve for the first variable, then
the second variable, etc.

Let’s say we have the following system:

𝐴𝑦 = 𝑏 where A is the lower-triangular matrix 𝐴 =
⎡⎢
⎣

1 0 0
−1 1 0
1 2 1

⎤⎥
⎦

, and we want to solve for 𝑏 = ⎡⎢
⎣

1
0
1
⎤⎥
⎦

.

. . .

We form the augmented matrix 𝐴 = [𝐴|𝑏] = ⎡⎢
⎣

1 0 0 | 1
−1 1 0 | 0
1 2 1 | 1

⎤⎥
⎦

.

. . .

Forward substitution:

1. First equation: 𝑦1 = 1.

6

2. Substitute this value into the second equation, −𝑦1+𝑦2 =
0, so 𝑦2 = 1.

3. Finally, we substitute 𝑦1 and 𝑦2 into the third equation,
𝑦1 + 2𝑦2 + 𝑦3 = 1, so 𝑦3 = −2.

. . .

This was just as easy as solving the upper triangular system!

Solving 𝐴𝑥 = 𝑏 with LU factorization

Now suppose we want to solve 𝐴𝑥 = 𝑏 and we know that 𝐴 =
𝐿𝑈 . The original system becomes 𝐿𝑈𝑥 = 𝑏.

Introduce an intermediate variable 𝑦 = 𝑈𝑥. Our system is now
𝐿𝑦 = 𝑏. Now perform these steps:

1. Forward solve: Solve lower triangular system 𝐿𝑦 = 𝑏
for the variable 𝑦.

2. Back solve: Solve upper triangular system 𝑈𝑥 = 𝑦 for
the variable 𝑥.

3. This does it!

. . .

Once we have the matrices 𝐿, 𝑈 , the right-hand sides only come
when solving the two triangular systems. Easy!

Example

You are given that

𝐴 = ⎡⎢
⎣

2 1 0
−2 0 −1

2 3 −3
⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
−1 1 0

1 2 1
⎤⎥
⎦

⎡⎢
⎣

2 1 0
0 1 −1
0 0 −1

⎤⎥
⎦

.

Solve this system for b = ⎡⎢
⎣

1
0
1
⎤⎥
⎦

.

. . .

7

Forward solve:

⎡⎢
⎣

1 0 0
−1 1 0

1 2 1
⎤⎥
⎦

⎡⎢
⎣

𝑦1
𝑦2
𝑦3

⎤⎥
⎦

= ⎡⎢
⎣

1
0
1

⎤⎥
⎦

𝑦1 = 1, then 𝑦2 = 0 + 1𝑦1 = 1, then 𝑦3 = 1 − 1𝑦1 − 2𝑦2 = −2.

Back solve:

⎡⎢
⎣

2 1 0
0 1 −1
0 0 −1

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

1
1

−2
⎤⎥
⎦

𝑥3 = −2/(−1) = 2, then 𝑥2 = 1 + 𝑥3 = 3, then
𝑥1 = (1 − 1𝑥2) /2 = −1.

When we can do LU factorization

• Not all square matrices have LU factorizations! This one

doesn’t: [0 1
1 0]

• If Gaussian elimination can be performed on the matrix 𝐴
without row exchanges, then the factorization exists

– (it’s really a by-product of Gaussian elimination.)

• If row exchanges are needed, there is still a factorization
that will work, but it’s a bit more complicated.

Intuition behind LU factorization

Example

Here we do Gaussian elimination on the matrix 𝐴 =
⎡⎢
⎣

2 1 0
−2 0 −1
2 3 −3

⎤⎥
⎦

:

[2 1 0
−2 0 −1
2 3 −3

]
𝐸21(1)

−−−−−→
𝐸31(−1)

[2 1 0
0 1 −1
0 2 −3

] ⟶−−−−−→
𝐸32(−2)

[2 1 0
0 1 −1
0 0 −1

]

8

Let’s put those elementary row operations into matrix form.
There were three of them:

1. 𝐸21(1) : ⎡⎢
⎣

1 0 0
1 1 0
0 0 1

⎤⎥
⎦

2. 𝐸31(−1): ⎡⎢
⎣

1 0 0
0 1 0

−1 0 1
⎤⎥
⎦

3. 𝐸32(−2): ⎡⎢
⎣

1 0 0
0 1 0
0 −2 1

⎤⎥
⎦

The inverses of these matrices are

1. ⎡⎢
⎣

1 0 0
−1 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 0 0
0 1 0
1 0 1

⎤⎥
⎦

, and ⎡⎢
⎣

1 0 0
0 1 0
0 2 1

⎤⎥
⎦

.

The product of all these matrices is

⎡⎢
⎣

1 0 0
0 1 0

−1 0 1
⎤⎥
⎦

⎡⎢
⎣

1 0 0
1 1 0
0 0 1

⎤⎥
⎦

⎡⎢
⎣

1 0 0
0 1 0
0 −2 1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
1 1 0

−1 −2 1
⎤⎥
⎦

This is a lower triangular matrix, and it is the inverse of the
matrix we used to do Gaussian elimination.

We can also see that the entries below the diagonal are the
negatives of the multipliers we used in the elimination steps.

How to Compute an LU Factorization (no row swaps)

Algorithm:

1. Start with 𝑈 ∶= 𝐴 and 𝐿 ∶= 𝐼 (identity matrix).

2. For each pivot column 𝑘 = 1, … , 𝑛 − 1:

• For each row 𝑖 = 𝑘 + 1, … , 𝑛:

9

– Compute the multiplier: ℓ𝑖𝑘 ∶= 𝑈𝑖𝑘/𝑈𝑘𝑘
– Update the row in 𝑈 : subtract ℓ𝑖𝑘 times row 𝑘

from row 𝑖
– Store the multiplier in 𝐿: set 𝐿𝑖𝑘 ∶= ℓ𝑖𝑘

3. At the end, 𝑈 is upper triangular, 𝐿 is unit lower trian-
gular, and 𝐴 = 𝐿𝑈 .

Note: If a pivot 𝑈𝑘𝑘 is zero (or you decide to swap rows), you
need a permutation matrix: 𝑃𝐴 = 𝐿𝑈 (see PLU factorization
section below).

This is exactly what “store the multipliers as you go” means.

Steps to LU factorization

Let [𝑎(𝑘)
𝑖𝑗] be the matrix obtained from 𝐴 after using the 𝑘 th

pivot to clear out entries below it.

. . .

(The original matrix is 𝐴 = [𝑎(0)
𝑖𝑗])

. . .

All the row operations we will use include ratios (−𝑎𝑖𝑗/𝑎𝑗𝑗).

. . .

The row-adding elementary operations are of the form

𝐸𝑖𝑗 (−𝑎(𝑘)
𝑖𝑗 /𝑎(𝑘)

𝑗𝑗)
. . .

We can give these ratios a name: multipliers.

𝑚𝑖𝑗 = −𝑎(𝑘)
𝑖𝑗 /𝑎(𝑘)

𝑗𝑗 , where 𝑖 > 𝑗
. . .

If Gaussian elimination is used without row exchanges on the
nonsingular matrix 𝐴, resulting in the upper triangular matrix
𝑈 , and if 𝐿 is the unit lower triangular matrix whose entries
below the diagonal are the negatives of the multipliers 𝑚𝑖𝑗, then
𝐴 = 𝐿𝑈 .

10

Storing the multipliers as we go

For efficiency, we can just “store” the multipliers in the lower
triangular part of the matrix on the left as we go along, since
that will be zero anyways.

⎡⎢
⎣

(2) 1 0
−2 0 −1

2 3 −3
⎤⎥
⎦

𝐸21(1)
−−−−−→
𝐸31(−1)

⎡⎢
⎣

2 1 0
−1 (1) −1

1 2 −3
⎤⎥
⎦

⟶−−−−−→
𝐸32(−2)

⎡⎢
⎣

2 1 0
−1 1 −1

1 2 −1
⎤⎥
⎦

.

. . .

Now we read off the results from the final matrix:

𝐿 = ⎡⎢
⎣

1 0 0
1 1 0

−1 2 1
⎤⎥
⎦

and 𝑈 = ⎡⎢
⎣

2 1 0
0 1 −1
0 0 −1

⎤⎥
⎦

Superaugmented matrix

Could we just keep track by using the superaugmented matrix,
like we did last lecture? What would that look like?

pause

[2 1 0 1 0 0
−2 0 −1 0 1 0
2 3 −3 0 0 1

]
𝐸21(1)

−−−−−→
𝐸31(−1)

[2 1 0 1 0 0
0 1 −1 1 1 0
0 2 −3 −1 0 1

] ⟶−−−−−→
𝐸32(−2)

[2 1 0 1 0 0
0 1 −1 1 1 0
0 0 −1 −3 −2 1

]
. . .

Our superaugmented matrix does become an upper triangular
matrix on the left and a lower triangular matrix on the right.

Unfortunately, the lower triangular matrix on the right is 𝐿̃−1,
not 𝐿̃.

So we can’t just read off 𝐿 and 𝑈 from the superaugmented
matrix.

11

PLU factorization

What if we need row exchanges?

• We could start off by doing all the row-exchanging ele-
mentary operations that we need, and store the product
of these row-exchanging matrices as a matrix 𝑃 .

• This product is called a permutation matrix

• Applying the correct permuatation matrix 𝑃 to 𝐴, we
get a matrix for which Gaussian elimination will succeed
without further row exchanges.

. . .

Now we have a theorem that applies to all nonsingular matri-
ces:

If 𝐴 is a nonsingular matrix, then there exists a permutation
matrix 𝑃 , upper triangular matrix 𝑈 , and unit lower triangular
matrix 𝐿 such that 𝑃 𝐴 = 𝐿𝑈 .

. . .

So, if you’ve got a nonsingular matrix 𝐴, you can always find
a permutation matrix 𝑃 , an upper triangular matrix 𝑈 , and a
unit lower triangular matrix 𝐿 that satisfy 𝑃𝐴 = 𝐿𝑈 . Pretty
neat, huh?

12

	MCMC
	Idea of MCMC

	Restricted Boltzmann Machine
	Intro to the idea of a Restricted Boltzmann Machine
	Math of the RBM
	
	
	Training
	Details of the training
	
	Gibbs sampling to the rescue
	Using an RBM

	LU Factorization
	
	LU Factorization: Saving that work
	Solving an upper triangular system
	Solving a lower triangular system
	Solving A x = b with LU factorization
	Example
	When we can do LU factorization
	Intuition behind LU factorization
	Example
	
	How to Compute an LU Factorization (no row swaps)
	Steps to LU factorization
	Storing the multipliers as we go
	Superaugmented matrix
	PLU factorization

