Ch2 Lecture 5

Odds and ends

Block multiplication

Block Multiplication

Suppose we need to multiply these matrices…

\left[\begin{array}{llll} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]\left[\begin{array}{llll} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] .

pause

Column Vectors as Blocks

A \mathbf{x}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]=\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\mathbf{a}_{3} x_{3}

Transpose and Conjugate Transpose

Transpose and Conjugate Transpose

  • Let A=\left[a_{i j}\right] be an m \times n matrix with (possibly) complex entries.

  • The transpose of A is the n \times m matrix A^{T} obtained by interchanging the rows and columns of A

  • The conjugate of A is the matrix \bar{A}=\left[\overline{a_{i j}}\right]

  • Finally, the conjugate (Hermitian) transpose of A is the matrix A^{*}=\bar{A}^{T}.

Example 1

Find the transpose and conjugate transpose of:

\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]

\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 1 & 1 \end{array}\right]^{*}=\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 1 & 1 \end{array}\right]^{T}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{array}\right]

Example 2

Find the transpose and conjugate transpose of:

\left[\begin{array}{rr}1 & 1+\mathrm{i} \\ 0 & 2 \mathrm{i}\end{array}\right]

\left[\begin{array}{rr} 1 & 1+\mathrm{i} \\ 0 & 2 \mathrm{i} \end{array}\right]^{*}=\left[\begin{array}{rr} 1 & 0 \\ 1-\mathrm{i} & -2 \mathrm{i} \end{array}\right], \quad\left[\begin{array}{rr} 1 & 1+\mathrm{i} \\ 0 & 2 \mathrm{i} \end{array}\right]^{T}=\left[\begin{array}{rr} 1 & 0 \\ 1+\mathrm{i} & 2 \mathrm{i} \end{array}\right]

Laws of Matrix Transpose

Let A and B be matrices of the appropriate sizes so that the following operations make sense, and c a scalar.

  1. (A+B)^{T}=A^{T}+B^{T}

  2. (A B)^{T}=B^{T} A^{T}

  3. (c A)^{T}=c A^{T}

  4. \left(A^{T}\right)^{T}=A

Symmetric and Hermetian Matrices

The matrix A is said to be:

  • symmetric if A^{T}=A
  • Hermitian if A^{*}=A

Is this matrix symmetric? Hermetian?

\left[\begin{array}{rr}1 & 1+\mathrm{i} \\ 1-\mathrm{i} & 2\end{array}\right]

It’s Hermetian, but not symmetric.

\left[\begin{array}{rr} 1 & 1+\mathrm{i} \\ 1-\mathrm{i} & 2 \end{array}\right]^{*}=\left[\begin{array}{rr} 1 & \overline{1+\mathrm{i}} \\ \overline{1-\mathrm{i}} & 2 \end{array}\right]^{T}=\left[\begin{array}{rr} 1 & 1+\mathrm{i} \\ 1-\mathrm{i} & 2 \end{array}\right]

Inner and outer products

Inner product

  • Let \mathbf{u} and \mathbf{v} be column vectors of the same size, say n \times 1.

  • Then the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity \mathbf{u}^{T} \mathbf{v}

Find the inner product of \mathbf{u}=\left[\begin{array}{r} 2 \\ -1 \\ 1 \end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right]

\mathbf{u}^{T} \mathbf{v}=[2,-1,1]\left[\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right]=2 \cdot 3+(-1) 4+1 \cdot 1=3

Outer product

  • The outer product of \mathbf{u} and \mathbf{v} is the n \times n matrix \mathbf{u v}^{T}.

Find the outer product of

\mathbf{u}=\left[\begin{array}{r} 2 \\ -1 \\ 1 \end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right]

\mathbf{u v}^{T}=\left[\begin{array}{r} 2 \\ -1 \\ 1 \end{array}\right][3,4,1]=\left[\begin{array}{rrr} 2 \cdot 3 & 2 \cdot 4 & 2 \cdot 1 \\ -1 \cdot 3 & -1 \cdot 4 & -1 \cdot 1 \\ 1 \cdot 3 & 1 \cdot 4 & 1 \cdot 1 \end{array}\right]=\left[\begin{array}{rrr} 6 & 8 & 2 \\ -3 & -4 & -1 \\ 3 & 4 & 1 \end{array}\right]

Determinants

The determinant of a square n \times n matrix A=\left[a_{i j}\right], \operatorname{det} A, is defined recursively:

If n=1 then \operatorname{det} A=a_{11};

otherwise,

  • suppose we have determinents for all square matrices of size less than n
  • Define M_{i j}(A) as the determinant of the (n-1) \times(n-1) matrix obtained from A by deleting the i th row and j th column of A

then

\begin{aligned} \operatorname{det} A & =\sum_{k=1}^{n} a_{k 1}(-1)^{k+1} M_{k 1}(A) \\ & =a_{11} M_{11}(A)-a_{21} M_{21}(A)+\cdots+(-1)^{n+1} a_{n 1} M_{n 1}(A) \end{aligned}

Laws of Determinants

Determinant of an upper-triangular matrix: \begin{aligned} \operatorname{det} A & =\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n n} \end{array}\right|=a_{11}\left|\begin{array}{cccc} a_{22} & a_{23} & \cdots & a_{2 n} \\ 0 & a_{33} & \cdots & a_{3 n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n n} \end{array}\right| \\ & =\cdots=a_{11} \cdot a_{22} \cdots a_{n n} . \end{aligned}

D1: If A is an upper triangular matrix, then the determinant of A is the product of all the diagonal elements of A.

More Laws of Determinants

  • D2: If B is obtained from A by multiplying one row of A by the scalar c, then \operatorname{det} B=c \cdot \operatorname{det} A.

  • D3: If B is obtained from A by interchanging two rows of A, then \operatorname{det} B= -\operatorname{det} A.

  • D4: If B is obtained from A by adding a multiple of one row of A to another row of A, then \operatorname{det} B=\operatorname{det} A.

    • Note: this means that the determinant of a matrix is unchanged by elementary row operations.

Determinant Laws in terms of Elementary Matrices

  • D2: \operatorname{det}\left(E_{i}(c) A\right)=c \cdot \operatorname{det} A (remember that for E_{i}(c) to be an elementary matrix, c \neq 0 ).
  • D3: \operatorname{det}\left(E_{i j} A\right)=-\operatorname{det} A.
  • D4: \operatorname{det}\left(E_{i j}(s) A\right)=\operatorname{det} A.

Determinant of Row Echelon Form

Let R be the reduced row echelon form of A, obtained through multiplication by elementary matrices:

R=E_{1} E_{2} \cdots E_{k} A .

Determinant of both sides:

\operatorname{det} R=\operatorname{det}\left(E_{1} E_{2} \cdots E_{k} A\right)= \pm(\text { nonzero constant }) \cdot \operatorname{det} A \text {. }

Therefore, \operatorname{det} A=0 precisely when \operatorname{det} R=0.

  • R is upper triangular, so \operatorname{det} R is the product of the diagonal entries of R.
  • If \operatorname{rank} A<n, then there will be zeros in some of the diagonal entries, so \operatorname{det} R=0.
  • If \operatorname{rank} A=n, the diagonal entries are all 1, so \operatorname{det} R=1.
    • A square matrix with rank n is invertible

Therefore,

D5: The matrix A is invertible if and only if \operatorname{det} A \neq 0.

Two more Determinant Laws

D6: Given matrices A, B of the same size,

\operatorname{det} A B=\operatorname{det} A \operatorname{det} B \text {. }

(but beware, \operatorname{det} A+\operatorname{det} B \neq \operatorname{det}(A+B))

D7: For all square matrices A, \operatorname{det} A^{T}=\operatorname{det} A

Easier way to calculate determinant

Just use the det function in Python! (That was copilot’s autocomplete…)

Use elementary row operations to get the matrix into upper triangular form, then multiply the diagonal entries.

An Inverse Formula

Adjoint, Minor, Cofactor Matrices

  • M_{i j}(A), the (i,j) th minor of A, is the determinant of the (n-1) \times (n-1) matrix obtained by deleting the ith row and jth column of A.
  • A_{i j}=(-1)^{i+j} M_{i j}(A) is the (i,j)t h cofactor of A.
  • Matrix of minors M(A) is the matrix whose (i,j) th entry is the minor M_{i j}(A).
  • Cofactor matrix A_{\text {cof }} is the matrix whose (i,j) th entry is the cofactor A_{i j}.
  • Adjoint of A is the transpose of the cofactor matrix, A^{*}=A_{\text {cof }}^{T}.

Example

A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 2 & 1\end{array}\right]

Matrix of minors:

Cofactor matrix and adjoint:

Overlay with the checkerboard \left[\begin{array}{l}+-+ \\ -+- \\ +-+\end{array}\right]. Take the transpose, to get

\operatorname{adj} A=\left[\begin{array}{rrr} 2 & -2 & -2 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \end{array}\right]

Back to the Inverse Formula

\begin{equation*} \sum_{k=1}^{n} A_{k i} a_{k j}=\delta_{i j} \operatorname{det} A \end{equation*}

Checking, with our example

Remeber, we had A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 2 & 1\end{array}\right]

We had computed the adjoint as A^{*}=\left[\begin{array}{rrr}2 & -2 & -2 \\ 0 & 1 & 1 \\ 0 & -2 & 0\end{array}\right]

Check:

A \operatorname{adj} A=\left[\begin{array}{rrr} 1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 2 & 1 \end{array}\right]\left[\begin{array}{rrr} 2 & -2 & -2 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \end{array}\right]=\left[\begin{array}{lll} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right]=(\operatorname{det} A) I_{3} .

So, A^{-1}=\frac{1}{\operatorname{det} A} A^{*}.

Cramer’s Rule

Explicit formula for solving linear systems with a nonsingular coefficient matrix.

Solve A \mathbf{x}=\mathbf{b}

Multiply both sides by A^{-1}: \mathbf{x}=A^{-1} \mathbf{b}

Use the formula for A^{-1}: \mathbf{x}=\frac{1}{\operatorname{det} A} A^{*} \mathbf{b}

The i th component of \mathbf{x} is

x_{i}=\frac{1}{\operatorname{det} A} \sum_{j=1}^{n} A_{j i} b_{j}

Interpretation of Cramer’s Rule

x_{i}=\frac{1}{\operatorname{det} A} \sum_{j=1}^{n} A_{j i} b_{j}

** pause **

  • Let A be an invertible n \times n matrix and \mathbf{b} an n \times 1 column vector.
  • Denote by B_{i} the matrix obtained from A by replacing the i th column of A by \mathbf{b}.
  • Then the linear system A \mathbf{x}=\mathbf{b} has unique solution \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), where
  • x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A}, \quad i=1,2, \ldots, n

Summary of Laws of Determinants

Let A, B be n \times n matrices.

  • D1: If A is upper triangular, \operatorname{det} A is the product of all the diagonal elements of A.

  • D2: \operatorname{det}\left(E_{i}(c) A\right)=c \cdot \operatorname{det} A.

  • D3: \operatorname{det}\left(E_{i j} A\right)=-\operatorname{det} A.

  • D4: \operatorname{det}\left(E_{i j}(s) A\right)=\operatorname{det} A.

  • D5: The matrix A is invertible if and only if \operatorname{det} A \neq 0.

  • D6: \operatorname{det} A B=\operatorname{det} A \operatorname{det} B.

  • D7: \operatorname{det} A^{T}=\operatorname{det} A.

  • D8: A \operatorname{adj} A=(\operatorname{adj} A) A=(\operatorname{det} A) I.

  • D9: If \operatorname{det} A \neq 0, then A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A.

Quadratic Forms

A quadratic form is a homogeneous polynomial of degree 2 in n variables. For example,

Q(x, y, z)=x^{2}+2 y^{2}+z^{2}+2 x y+y z+3 x z .

We can express this in matrix form!

\begin{aligned} x(x+2 y+3 z)+y(2 y+z)+z^{2} & =\left[\begin{array}{lll} x & y & z \end{array}\right]\left[\begin{array}{c} x+2 y+3 z \\ 2 y+z \\ z \end{array}\right] \end{aligned}

\begin{aligned} =\left[\begin{array}{lll} x & y & z \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\mathbf{x}^{T} A \mathbf{x}, \end{aligned}