
Ch2 Lecture 5

Today: Rewriting Matrix Expressions

1. Blocking: Group entries to simplify multiplication
2. Transpose: Switch row/column viewpoints

3. Determinants: Extract a single number that answers “invertible?”

. . .

Running Example

We’ll use the system 2𝑥1 − 𝑥2 = 1, 4𝑥1 + 4𝑥2 = 20 throughout to see how each tool helps
us understand and solve it.
Matrix: 𝐴 = [2 −1

4 4 ], b = [ 1
20]

Block multiplication

Block Multiplication

Difficulty: Large multiplications are painful

Suppose we need to multiply these matrices…

⎡⎢
⎣

1 2 0 0
3 4 0 0
0 0 1 0

⎤⎥
⎦

⎡
⎢⎢
⎣

0 0 2 1
0 0 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

.

pause

1



Concept: What is Block Multiplication?

The key idea: Partition so the block column-widths of the left matrix match the block row-
heights of the right matrix.

Then you multiply as if each block were an entry (but using matrix multiplication inside –
you’ll see what that means in a moment).

Method: Block Multiplication

Steps to perform block multiplication

1. Partition so the block column-widths of the left matrix match the block row-heights of
the right matrix.

2. Multiply block-rows by block-columns (same pattern as ordinary matrix multipli-
cation).

. . .

Formula: If
𝑀 = [ 𝐴 𝐵

𝐶 𝐷 ] , 𝑁 = [ 𝐸 𝐹
𝐺 𝐻 ] ,

then
𝑀𝑁 = [ 𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻

𝐶𝐸 + 𝐷𝐺 𝐶𝐹 + 𝐷𝐻 ] .

Worked example: block-multiply the matrices from before

We started with the (painful) product

⎡⎢
⎣

1 2 0 0
3 4 0 0
0 0 1 0

⎤⎥
⎦

⎡
⎢⎢
⎣

0 0 2 1
0 0 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

.

The vertical/horizontal lines are the “rectangles” that tell us where the blocks are.

. . .

We can give these blocks labels:

𝑀 = [ 𝐴 02×2
01×2 𝐵 ] , 𝑁 = [ 02×2 𝐶

02×2 𝐼2
] .
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Name the blocks

𝑀 = [ 𝐴 02×2
01×2 𝐵 ] , 𝑁 = [ 02×2 𝐶

02×2 𝐼2
] .

where

𝐴 = [ 1 2
3 4 ] , 𝐵 = [ 1 0 ] , 𝐶 = [ 2 1

1 1 ] , 𝐼2 = [ 1 0
0 1 ] .

Multiply block-by-block (like “row times column”)

𝑀 = [ 𝐴 02×2
01×2 𝐵 ] , 𝑁 = [ 02×2 𝐶

02×2 𝐼2
] .

Each block of (MN) is a block-row times a block-column:

𝑀𝑁 = [ 𝐴 ⋅ 02×2 + 02×2 ⋅ 02×2 𝐴 ⋅ 𝐶 + 02×2 ⋅ 𝐼2
01×2 ⋅ 02×2 + 𝐵 ⋅ 02×2 01×2 ⋅ 𝐶 + 𝐵 ⋅ 𝐼2

] .

. . .

Now simplify using (0�(�)=0) and (B I_2=B):

𝑀𝑁 = [ 02×2 𝐴𝐶
01×2 𝐵 ] .

𝑀𝑁 = [ 02×2 𝐴𝐶
01×2 𝐵 ] .

Compute the only nontrivial block:

𝐴𝐶 = [ 1 2
3 4 ] [ 2 1

1 1 ] = [ 4 3
10 7 ] .

So the full product is
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𝑀𝑁 = ⎡⎢
⎣

0 0 4 3
0 0 10 7
0 0 1 0

⎤⎥
⎦

.

Key insight: In our example, lots of blocks are zeros and one block is an identity, so most
terms vanish or simplify immediately.

Column Vectors as Blocks

The most important example of blocking: view a matrix as blocked into its columns.

𝐴x = [a1, a2, a3] ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= a1𝑥1 + a2𝑥2 + a3𝑥3

This shows 𝐴x as a linear combination of columns — an important interpretation that
connects matrix multiplication to the column space (we’ll see this in Chapter 3, day 8).

Blocking isn’t just a trick:

• Expose real structure: When matrices have zeros/identities/block-diagonal (or tri-
angular) form, there are parts that don’t interact, so big products/solves break into
smaller ones (many terms become (0)).

• Algorithm notation: many methods are “work on a submatrix, update the rest.”
Blocks keep dimensions straight; this shows up in QR (and later eigenvalue iterations)
as “top-left / bottom-right” reasoning.

Skills: what you should be able to do

• Identify compatible block partitions
• Multiply block-rows by block-columns
• Recognize the ‘columns-as-blocks’ identity: 𝐴x = ∑ 𝑥𝑖a𝑖
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Transpose and Conjugate Transpose

Concept: Why Transpose Matters

The transpose operation unlocks fundamental tools:

• Inner products: u𝑇 v is the dot product—we’ll see this is fundamental in least squares
(Chapter 4, day 9-10)

• Symmetric matrices: The transpose operation lets us define symmetry in a matrix.
Symmetry appears everywhere—quadratic forms (which we’ll see today), and many ap-
plications

Transpose and Conjugate Transpose

. . .

Definition: Transpose and Conjugate Transpose

• Let 𝐴 = [𝑎𝑖𝑗] be an 𝑚 × 𝑛 matrix with (possibly) complex entries.
• The transpose of 𝐴 is the 𝑛 × 𝑚 matrix 𝐴𝑇 obtained by interchanging the rows and

columns of 𝐴
• The conjugate of 𝐴 is the matrix ̄𝐴 = [𝑎𝑖𝑗]
• Finally, the conjugate (Hermitian) transpose of 𝐴 is the matrix 𝐴∗ = ̄𝐴𝑇 .

. . .

Running Example

For our system with 𝐴 = [2 −1
4 4 ]:

𝐴𝑇 = [ 2 4
−1 4]

Notice how rows become columns and vice versa.

Example 1

Find the transpose and conjugate transpose of:

[ 1 0 2
0 1 1 ]
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. . .

[ 1 0 2
0 1 1 ]

∗
= [ 1 0 2

0 1 1 ]
𝑇

= ⎡⎢
⎣

1 0
0 1
2 1

⎤⎥
⎦

. . .

Because the matrix is real, it has no complex entries, so the conjugate transpose is the same
as the transpose.

Example 2

Find the transpose and conjugate transpose of:

[ 1 1 + i
0 2i ]

. . .

[ 1 1 + i
0 2i ]

𝑇
= [ 1 0

1 + i 2i ] , [ 1 1 + i
0 2i ]

∗
= [ 1 0

1 − i −2i ]

Method: Transpose Laws

Let 𝐴 and 𝐵 be matrices of the appropriate sizes so that the following operations make sense,
and 𝑐 a scalar.

The following laws hold:

• (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 (distribute over addition)
• (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 (reverse order!)
• (𝑐𝐴)𝑇 = 𝑐𝐴𝑇 (scalar comes out)
• (𝐴𝑇 )𝑇 = 𝐴 (involution)

. . .

Key warning: Product order reverses: (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 , not 𝐴𝑇 𝐵𝑇 !
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Symmetric and Hermitian Matrices

The matrix 𝐴 is said to be:

• symmetric if 𝐴𝑇 = 𝐴
• Hermitian if 𝐴∗ = 𝐴

Examples of Symmetric, Hermitian, and Neither

Let’s see what these look like in concrete 2 × 2 examples.

1. Symmetric (real entries, 𝐴𝑇 = 𝐴):

𝐴 = [2 3
3 5]

Here, 𝐴𝑇 = 𝐴. Since the entries are real, 𝐴 is both symmetric and Hermitian.

2. Hermitian (complex entries, 𝐴∗ = 𝐴, but not symmetric):

𝐵 = [ 1 2 + 𝑖
2 − 𝑖 4 ]

Here, 𝐵 is not symmetric because (2 + 𝑖) ≠ (2 − 𝑖), but it is Hermitian because

𝐵∗ = 𝐵𝑇 = [ 1 2 − 𝑖
2 + 𝑖 4 ]

𝑇
= [ 1 2 + 𝑖

2 − 𝑖 4 ] = 𝐵.

3. Neither symmetric nor Hermitian:

𝐶 = [0 1 + 𝑖
3 2 ]

Here, 𝐶𝑇 = [ 0 3
1 + 𝑖 2] ≠ 𝐶 and 𝐶∗ = [ 0 3

1 − 𝑖 2] ≠ 𝐶, so 𝐶 is neither symmetric nor
Hermitian.
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Check: Symmetric vs Hermitian

Is this matrix symmetric? Hermitian?

[ 1 1 + i
1 − i 2 ]

. . .

It’s Hermitian, but not symmetric.

[ 1 1 + i
1 − i 2 ]

∗
= [ 1 1 + i

1 − i 2 ] = [ 1 1 − i
1 + i 2 ]

and then

[ 1 1 − i
1 + i 2 ]

𝑇
= [ 1 1 + i

1 − i 2 ]

Skills: what you should be able to do

• Compute transpose and conjugate transpose
• Apply (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 fluently (watch the order!)
• Recognize symmetric vs Hermitian matrices

Inner and outer products

Concept: Inner product

• Let u and v be column vectors of the same size, say 𝑛 × 1.

• Then the inner product of u and v is the scalar quantity u𝑇 v

. . .

Find the inner product of

u = ⎡⎢
⎣

2
−1

1
⎤⎥
⎦

and v = ⎡⎢
⎣

3
4
1

⎤⎥
⎦

u𝑇 v = [2, −1, 1] ⎡⎢
⎣

3
4
1

⎤⎥
⎦

= 2 ⋅ 3 + (−1)4 + 1 ⋅ 1 = 3
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Concept: Outer product

• The outer product of u and v is the 𝑛 × 𝑛 matrix uv𝑇 .

. . .

Find the outer product of

u = ⎡⎢
⎣

2
−1

1
⎤⎥
⎦

and v = ⎡⎢
⎣

3
4
1

⎤⎥
⎦

uv𝑇 = ⎡⎢
⎣

2
−1

1
⎤⎥
⎦

[3, 4, 1] = ⎡⎢
⎣

2 ⋅ 3 2 ⋅ 4 2 ⋅ 1
−1 ⋅ 3 −1 ⋅ 4 −1 ⋅ 1

1 ⋅ 3 1 ⋅ 4 1 ⋅ 1
⎤⎥
⎦

= ⎡⎢
⎣

6 8 2
−3 −4 −1

3 4 1
⎤⎥
⎦

Applications of Inner and Outer Products

Inner product (u𝑇 v): - Dot product: measures similarity/alignment between vectors - Pro-
jections: fundamental in least squares (we’ll see in Chapter 4, day 9-10) - PCA: we’ll see
Principal Component Analysis in Chapter 5 (day 14)

Outer product (uv𝑇 ): - Rank-1 matrices: building blocks for matrix factorizations - Low-
rank approximations: SVD and data compression (we’ll see in Chapter 5, day 14)

Example: Inner products in our running example

Running Example

The columns of our matrix 𝐴 are:

a1 = [2
4] , a2 = [−1

4 ]

Their inner product: a𝑇
1 a2 = 2(−1) + 4(4) = 14
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From Products to Quadratic Forms

Inner and outer products show how matrix multiplication can produce either a scalar (inner)
or a matrix (outer).

Quadratic forms are a major application: they package many terms into a single scalar
expression using transposes.

Concept: Quadratic Forms

A quadratic form is a homogeneous polynomial of degree 2 in 𝑛 variables. For example,

. . .

𝑄(𝑥, 𝑦, 𝑧) = 𝑥2 + 2𝑦2 + 𝑧2 + 2𝑥𝑦 + 𝑦𝑧 + 3𝑥𝑧.

. . .

We can express this in matrix form!

𝑥(𝑥 + 2𝑦 + 3𝑧) + 𝑦(2𝑦 + 𝑧) + 𝑧2 = [ 𝑥 𝑦 𝑧 ] ⎡⎢
⎣

𝑥 + 2𝑦 + 3𝑧
2𝑦 + 𝑧

𝑧
⎤⎥
⎦

. . .

= [ 𝑥 𝑦 𝑧 ] ⎡⎢
⎣

1 2 3
0 2 1
0 0 1

⎤⎥
⎦

⎡⎢
⎣

𝑥
𝑦
𝑧

⎤⎥
⎦

= x𝑇 𝐴x

Example: Rewrite as x𝑇 𝐴x

Physics example: kinetic energy

For a particle moving in the plane, the velocity vector is v = [ 𝑣𝑥
𝑣𝑦

]. With mass 𝑚, the kinetic

energy is the quadratic polynomial

𝑇 = 1
2𝑚 (𝑣2

𝑥 + 𝑣2
𝑦) .

. . .
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Write this as a quadratic form using the identity matrix:

𝑇 = 1
2 (𝑚𝑣2

𝑥 + 𝑚𝑣2
𝑦) = 1

2 [ 𝑣𝑥 𝑣𝑦 ] [ 𝑚 0
0 𝑚 ] [ 𝑣𝑥

𝑣𝑦
] = 1

2 v𝑇 (𝑚𝐼2)v.

What does the quadratic form buy us?

• One formula, any dimension: 𝑇 = 1
2v𝑇 (𝑚𝐼)v works in 2D, 3D, or for longer vectors.

. . .

• The matrix encodes the physics: 𝑚𝐼 means “same weight for movement in every
direction.” More generally, 𝑇 = 1

2v𝑇 𝑀v lets 𝑀 encode different weights/couplings.

. . .

• Immediate properties: if 𝑀 is symmetric positive definite, then 𝑇 ≥ 0 for all v.

Skills: what you should be able to do

• Compute u𝑇 v and interpret as dot product/similarity
• Compute uv𝑇 and recognize it as a rank-1 matrix
• Rewrite a quadratic polynomial as x𝑇 𝐴x

Determinants

Difficulty: Invertible or not?

We’ve seen that solving 𝐴x = b requires checking if 𝐴 is invertible.

Question: Is there a single number that tells us whether 𝐴 is invertible?

Answer: Yes! The determinant of 𝐴.

Concept: Why Determinants?

Invertibility

• If det 𝐴 ≠ 0, then 𝐴 is invertible
• If det 𝐴 = 0, then 𝐴 is singular (not invertible)

. . .
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Why determinants matter beyond invertibility

• Eigenvalues: Product of eigenvalues equals determinant (we’ll see eigenvalues in Chap-
ter 5, day 11)

• Explicit formulas: For 2×2 matrices, we have simple explicit formulas (inverse and
Cramer’s rule) that depend on the determinant

. . .

Computational note: Gaussian elimination is usually better for computation. For larger
matrices, explicit formulas exist but are computationally inefficient. The 2×2 case is the
exception where explicit formulas are practical.

. . .

Running Example

For our system with 𝐴 = [2 −1
4 4 ]:

We’ll compute det 𝐴 = 12 ≠ 0, confirming that 𝐴 is invertible and our system has a
unique solution.

Definition of the determinant

The determinant of a square 𝑛 × 𝑛 matrix 𝐴 = [𝑎𝑖𝑗], det 𝐴, is defined recursively:

If 𝑛 = 1 then det 𝐴 = 𝑎11;

. . .

otherwise,

• suppose we have determinants for all square matrices of size less than 𝑛
• Define 𝑀𝑖𝑗(𝐴) as the determinant of the (𝑛 − 1) × (𝑛 − 1) matrix obtained from 𝐴 by

deleting the 𝑖 th row and 𝑗 th column of 𝐴

. . .

then

det 𝐴 =
𝑛

∑
𝑘=1

𝑎𝑘1(−1)𝑘+1𝑀𝑘1(𝐴)

= 𝑎11𝑀11(𝐴) − 𝑎21𝑀21(𝐴) + ⋯ + (−1)𝑛+1𝑎𝑛1𝑀𝑛1(𝐴)
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Laws of the determinant

Determinant of an upper-triangular matrix:

det 𝐴 =
∣
∣
∣
∣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
0 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮
0 0 ⋯ 𝑎𝑛𝑛

∣
∣
∣
∣
= 𝑎11

∣
∣
∣
∣

𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮
0 0 ⋯ 𝑎𝑛𝑛

∣
∣
∣
∣

= ⋯ = 𝑎11 ⋅ 𝑎22 ⋯ 𝑎𝑛𝑛.

. . .

D1: If 𝐴 is an upper triangular matrix, then the determinant of 𝐴 is the product of all the
diagonal elements of 𝐴.

More Laws of Determinants

• D2: If 𝐵 is obtained from 𝐴 by multiplying one row of 𝐴 by the scalar 𝑐, then det 𝐵 =
𝑐 ⋅ det 𝐴.

• D3: If 𝐵 is obtained from 𝐴 by interchanging two rows of 𝐴, then det 𝐵 = − det 𝐴.

• D4: If 𝐵 is obtained from 𝐴 by adding a multiple of one row of 𝐴 to another row of 𝐴,
then det 𝐵 = det 𝐴.

Determinant Laws in terms of Elementary Matrices

• D2: det (𝐸𝑖(𝑐)𝐴) = 𝑐 ⋅ det 𝐴 (remember that for 𝐸𝑖(𝑐) to be an elementary matrix, 𝑐 ≠ 0
).

• D3: det (𝐸𝑖𝑗𝐴) = − det 𝐴.
• D4: det (𝐸𝑖𝑗(𝑠)𝐴) = det 𝐴.

Determinant of Row Echelon Form

Let R be the reduced row echelon form of A, obtained through multiplication by elementary
matrices:

𝑅 = 𝐸1𝐸2 ⋯ 𝐸𝑘𝐴.

. . .

Determinant of both sides:
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det 𝑅 = det (𝐸1𝐸2 ⋯ 𝐸𝑘𝐴) = ±( nonzero constant ) ⋅ det 𝐴.

. . .

Therefore, det 𝐴 = 0 precisely when det 𝑅 = 0.

. . .

• 𝑅 is upper triangular, so det 𝑅 is the product of the diagonal entries of 𝑅.
• If rank 𝐴 < 𝑛, then there will be zeros in some of the diagonal entries, so det 𝑅 = 0.
• If rank 𝐴 = 𝑛, the diagonal entries are all 1, so det 𝑅 = 1.

– A square matrix with rank 𝑛 is invertible

. . .

Therefore,

D5: The matrix 𝐴 is invertible if and only if det 𝐴 ≠ 0.

Two more Determinant Laws

D6: Given matrices 𝐴, 𝐵 of the same size,

det 𝐴𝐵 = det 𝐴 det 𝐵.

. . .

(but beware, det 𝐴 + det 𝐵 ≠ det(𝐴 + 𝐵))
D7: For all square matrices 𝐴, det 𝐴𝑇 = det 𝐴

Method: Compute determinant in practice

Steps to compute the determinant

1. Use elementary row operations to get the matrix into upper triangular form
2. Keep track of row operations to adjust for sign changes and scalar multiplications
3. Multiply the diagonal entries

. . .
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Key rules

• Row swap: multiply by −1
• Row scale by 𝑐: multiply by 𝑐
• Row replacement: no change

Explicit Formulas for inverses and solving linear systems with 2×2 Matrices

Method (2×2 toolkit):

• To find inverses, use the 2×2 inverse formula: 𝐴−1 = 1
𝑎𝑑−𝑏𝑐 [ 𝑑 −𝑏

−𝑐 𝑎 ]
• To solve linear systems, apply Cramer’s rule for 2×2 systems

2×2 Inverse Formula:

𝐴−1 = 1
det 𝐴 [ 𝑑 −𝑏

−𝑐 𝑎 ] = 1
12 [ 4 1

−4 2] = [
1
3

1
12

−1
3

1
6

]

This is a useful explicit formula for 2×2 matrices! :::

. . .

Why Only 2×2?

For larger matrices, explicit formulas exist (using cofactors and adjoints), but they are
computationally inefficient compared to Gaussian elimination. The 2×2 case is the ex-
ception where the explicit formula is simple and practical.

Cramer’s Rule (2×2)

For n×n systems, Cramer’s rule gives us an explicit formula for the solution. But here we will
only consider the 2×2 case.

Let 𝐴 be an invertible 2 × 2 matrix and b a 2 × 1 column vector.

Denote by 𝐵1 the matrix obtained from 𝐴 by replacing the first column of 𝐴 by b, and 𝐵2
the matrix obtained by replacing the second column.

Then the linear system 𝐴x = b has unique solution:

𝑥1 = det 𝐵1
det 𝐴 , 𝑥2 = det 𝐵2

det 𝐴
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Example: Using Cramer’s Rule

Solve the system:

2𝑥1 − 𝑥2 = 1
4𝑥1 + 4𝑥2 = 20

. . .

The coefficient matrix and right-hand side are:

𝐴 = [ 2 −1
4 4 ] , b = [ 1

20 ]

. . .

Compute det 𝐴 = 2 ⋅ 4 − (−1) ⋅ 4 = 8 + 4 = 12.

. . .

Now apply Cramer’s rule:

𝑥1 = det 𝐵1
det 𝐴 =

∣ 1 −1
20 4 ∣

12 = 4 − (−20)
12 = 24

12 = 2

𝑥2 = det 𝐵2
det 𝐴 =

∣ 2 1
4 20 ∣

12 = 40 − 4
12 = 36

12 = 3

. . .

Check: 2(2) − 3 = 1 � and 4(2) + 4(3) = 20 �

Summary of Laws of Determinants

Let 𝐴, 𝐵 be 𝑛 × 𝑛 matrices.

• D1: If 𝐴 is upper triangular, det 𝐴 is the product of all the diagonal elements of 𝐴.

• D2: det (𝐸𝑖(𝑐)𝐴) = 𝑐 ⋅ det 𝐴.

• D3: det (𝐸𝑖𝑗𝐴) = − det 𝐴.

• D4: det (𝐸𝑖𝑗(𝑠)𝐴) = det 𝐴.

• D5: The matrix 𝐴 is invertible if and only if det 𝐴 ≠ 0.
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• D6: det 𝐴𝐵 = det 𝐴 det 𝐵.

• D7: det 𝐴𝑇 = det 𝐴.

Skills: what you should be able to do

• Decide invertibility using det 𝐴 (invertible iff det 𝐴 ≠ 0)
• Compute det 𝐴 efficiently via elimination (tracking row swaps/scales)
• Use the 2×2 inverse formula when needed
• Solve a 2×2 system using Cramer’s rule
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