Ch3 Lecture 1

A bit about gas in a tube

Sec \backslash Meter 0 1 / 6 1 / 3 1 / 2 2 / 3 5 / 6 1
t=240 0.0 0.032 1.23 3.69 1.23 0.032 0.0
t=270 0.0 0.051 1.21 3.48 1.21 0.051 0.0

Goal: find D.

\begin{equation*} y_{i, t+1}=y_{i, t}+\frac{k D}{h^{2}}\left(y_{i-1, t}-2 y_{i, t}+y_{i+1, t}\right)+k f_{i, t} \end{equation*}

\begin{equation*} y_{i, t+1}=y_{i, t}+d\left(y_{i-1, t}-2 y_{i, t}+y_{i+1, t}\right) \end{equation*}

y_{0,t+1} = 0 y_{1,t+1}=y_{1,t}+d\left(0-2 y_{1,t}+y_{2,t}\right) y_{3,t+1}=y_{3,t}+d\left(y_{2,t}-2 y_{3,t}+y_{4,t}\right)y_{6,t+1}=0

We want to solve these for y_{i,t} given y_{i,t+1}.

\begin{equation*} y_{i, t+1}-d\left(y_{i-1, t}-2 y_{i, t}+y_{i+1, t}\right)=y_{i, t} \end{equation*}

\approx y_{i, t+1}-d\left(y_{i-1, t+1}-2 y_{i, t+1}+y_{i+1, t+1}\right) ?

In matrix form

In matrix form, this becomes y_{t+1}=y_{t}+ d My_{t}:

M=\left[\begin{array}{ccccccc} -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 \end{array}\right]

y_{t}=y_{t+1}- d My_{t} \overset{?}\approx y_{t+1}- d My_{t+1}

Turns out it works… but why?

Using matrix inversion

  • y_{t+1}=y_{t}+ dMy_{t}
  • is the same as y_{t+1}=Iy_{t}+ dMy_{t}
  • in other words, y_{t+1}=(I+dM)y_{t}

How do we solve this for y_{t}, given y_{t+1}?

y_{t+1}=(I+dM)y_{t} \Rightarrow y_{t}=(I+dM)^{-1}y_{t+1}

Two different approaches – one correct, the other one gave approximately the right answer. Why?

y_{t+1}=(I+dM)y_{t} \Rightarrow y_{t}=(I+dM)^{-1}y_{t+1}

y_{t}=y_{t+1}- dMy_{t} \overset{?}\approx y_{t+1}- d My_{t+1}

Connection: we will use math to show that the two are approximately equal.

Remember Taylor series?

For small x, we can approximate \frac{1}{1+x} as 1-x+x^2-x^3+\ldots

If we have a matrix A such that X = I + A is invertible, then X^{-1} = I - A + A^2 - A^3 + \ldots

So to first order in d,

y_{t}=(I+dM)^{-1}y_{t+1} \approx \left(I-dM\right) y_{t+1}=y_{t+1}-d M y_{t+1}

Now y_{t+1}=y_{t} + dM y_{t}. Plugging this in,

y_{t}=(I+dM)^{-1}y_{t+1} \approx y_{t+1}-d M \left(y_{t}+d M y_{t}\right)\approx y_{t+1}-d M y_{t}

The point

The problem was much easier to solve once we put it in matrix form.

Independence and Bases

Linear Independence

The vectors \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} are linearly dependent if there exist scalars c_{1}, c_{2}, \ldots, c_{n}, not all zero, such that

\begin{equation*} c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0} \end{equation*}

Otherwise, the vectors are called linearly independent.

Checking for Linear Independence

Is this set of vectors linearly independent?

\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right]

Goal: find some set of scalars c_{1}, c_{2}, c_{3}, not all zero, such that c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}.

Define: - matrix A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right] - vector \mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right).

Then:

c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]\left[\begin{array}{l} c_{1} \\ c_{2} \\ c_{3} \end{array}\right]=A \mathbf{c}

So we just need to see if there is a nontrivial solution to A \mathbf{c}=\mathbf{0}.

Is this set of vectors linearly independent?

\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right]

Put in matrix form and find the reduced row echelon form: . . .

\left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & -2 \end{array}\right] \xrightarrow[E_{21}(-1)]{\longrightarrow}\left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{array}\right] \xrightarrow[E_{32}(-1)]{\longrightarrow}\left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array}\right],

-1 \mathbf{v}_{1}+2 \mathbf{v}_{2}+1 \mathbf{v}_{3}=0

So the vectors are linearly dependent.

Example 2

Are the following vectors linearly independent?

\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]

Set up A = \left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]

Different approach: \operatorname{det}\left[\begin{array}{lll} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right]=-1 \operatorname{det}\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=-1

Determinant is non-zero, so A is invertible (non-singular)

Only solution to A \mathbf{c}=0 is \mathbf{c}=0.

So the vectors are linearly independent.

Summary

Summary: Checking for Linear Independence

  1. Set up matrix A with the vectors as columns.
  2. Either:
    • Find the reduced row echelon form of A.
    • Calculate the determinant of A.
    • Check if the only solution to A \mathbf{c}=0 is \mathbf{c}=0.

Basis of a Vector Space

A spanning set is a set of vectors that can be combined to create any vector in the vector space.

A basis for the vector space V is a spanning set of vectors \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} that is a linearly independent set.

Standard Basis

The standard basis for \mathbb{R}^{n} is the set of vectors \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} given by the columns of the n \times n identity matrix.

Showing that the Standard Basis is a Basis for the reals or complex numbers

  • Let \mathbf{v}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) be a vector from V
  • c_{1}, c_{2}, \ldots, c_{n} are scalars (real or complex)

\begin{aligned} \mathbf{v} & =\left[\begin{array}{c} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{array}\right]=c_{1}\left[\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}\right]+c_{2}\left[\begin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array}\right]+\cdots+c_{n}\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right] \\ & =c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+\cdots+c_{n} \mathbf{e}_{n} . \end{aligned}

Invertibility, Basis, and Linear Independence

An n \times n real matrix A is invertible if and only if its columns are linearly independent

in which case they form a basis of \mathbb{R}^{n}

Column and Row Spaces

The column space of the m \times n matrix A is the subspace \mathcal{C}(A) of \mathbb{R}^{m} spanned by the columns of A.

The row space of the m \times n matrix A is the subspace \mathcal{R}(A) of \mathbb{R}^{n} spanned by the transposes of the rows of A

Null Space

The null space of the m \times n matrix A is the subset \mathcal{N}(A) of \mathbb{R}^{n}

\mathcal{N}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}

\mathcal{N}(A) is just the solution set to A \mathbf{x}=\mathbf{0}

For example, if A is invertible, A \mathbf{x}=\mathbf{0} has only the trivial solution \mathbf{x}=\mathbf{0}

so \mathcal{N}(A) is just \left\{\mathbf{0}\right\}.

A is invertible exactly if \mathcal{N}(A)=\{\mathbf{0}\}

Kernel of an Operator

The kernel of the linear operator T : V \rightarrow W is the subspace of V defined by

\operatorname{ker}(T)=\{\mathbf{x} \in V \mid T(\mathbf{x})=\mathbf{0}\}

For matrix operators kernels are the same thing as null spaces.

Example

Find the null space of the matrix

A=\left[\begin{array}{rrrr} 1 & 1 & 1 & -1 \\ 0 & 1 & 2 & 1 \end{array}\right]

corresponding to the system of equations \begin{aligned} x_{1}+x_{2}+x_{3}-x_{4} & =0 \\ x_{2}+2 x_{3}+x_{4} & =0 \end{aligned}

  1. Find the RREF of A:

\begin{aligned} & x_{1}=x_{3}+2 x_{4} \\ & x_{2}=-2 x_{3}-x_{4} . \end{aligned}

\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array}\right]=\left[\begin{array}{c} x_{3}+2 x_{4} \\ -2 x_{3}-x_{4} \\ x_{3} \\ x_{4} \end{array}\right]=x_{3}\left[\begin{array}{r} 1 \\ -2 \\ 1 \\ 0 \end{array}\right]+x_{4}\left[\begin{array}{r} 2 \\ -1 \\ 0 \\ 1 \end{array}\right] .

The general solution to the homogeneous system is an arbitrary linear combination of these two vectors

\mathcal{N}(A)=\operatorname{span}\left\{\left[\begin{array}{r} 1 \\ -2 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{r} 2 \\ -1 \\ 0 \\ 1 \end{array}\right]\right\} \subseteq \mathbb{R}^{4}

These are independent, so they form a basis for \mathcal{N}(A)

Using the Null Space

Suppose that a Markov chain has an stable transition matrix A=\left[\begin{array}{ll}0.7 & 0.4 \\ 0.3 & 0.6\end{array}\right], so that

\mathbf{x}^{(k+1)}=A \mathbf{x}^{(k)}

What is the steady-state vector \mathbf{x}? (The limit as k \rightarrow \infty of \mathbf{x}^{(k)})

Take limit of both sides:

\mathbf{x}=A \mathbf{x}

\mathbf{0}=\mathbf{x}-A \mathbf{x}=I \mathbf{x}-A \mathbf{x}=(I-A) \mathbf{x}

So \mathbf{x} is in the null space of I-A.

I-A=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]-\left[\begin{array}{ll} 0.7 & 0.4 \\ 0.3 & 0.6 \end{array}\right]=\left[\begin{array}{rr} 0.3 & -0.4 \\ -0.3 & 0.4 \end{array}\right] \text {. }

\left[\begin{array}{rr} 0.3 & -0.4 \\ -0.3 & 0.4 \end{array}\right] \xrightarrow{E_{21}(1)}\left[\begin{array}{rr} 1 & -4 / 3 \\ 0 & 0 \end{array}\right]

Solution set is x_{1}=4 x_{2} / 3

(3 / 7)(4 / 3,1)=(4 / 7,3 / 7) \approx(0.57143,0.42857)

Using the Null Space to find a basis

Find a basis for the column space of the matrix

A=\left[\begin{array}{rrrr} 1 & 1 & 1 & -1 \\ 0 & 1 & 2 & 1 \end{array}\right]

From before, we found the RREF and used this to find a general form of the solutions to A \mathbf{x}=\mathbf{0}

\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \left(x_{3}+2 x_{4},-2 x_{3}-x_{4}, x_{3}, x_{4}\right)

Write A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right]

\mathbf{0}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}+x_{4} \mathbf{a}_{4}

\mathbf{0}=\left(x_{3}+2 x_{4}\right) \mathbf{a}_{1}-\left(2 x_{3}+x_{4}\right) \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}+x_{4} \mathbf{a}_{4}

Take x_{3}=1 and x_{4}=0. Then \mathbf{0}=\mathbf{a}_{1}-2 \mathbf{a}_{2}+\mathbf{a}_{3}

So \mathbf{a}_{3} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}

Similarly, take x_{3}=0 and x_{4}=1. Then \mathbf{0}=2 \mathbf{a}_{1}-\mathbf{a}_{2}+\mathbf{a}_{4} so \mathbf{a}_{4} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}

So \mathbf{a}_{1} and \mathbf{a}_{2} are a basis for the column space of A

\mathcal{C}(A)=\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}

Consistency and Column Space: Back to Linear Systems

The linear system A \mathbf{x}=\mathbf{b} of m equations in n unknowns is consistent if and only if \mathbf{b} \in \mathcal{C}(A).

  • A \mathbf{x} is a linear combination of the columns of A with the entries of \mathbf{x} as scalar coefficients
  • If A \mathbf{x}=\mathbf{b} has a solution means some linear combination of columns of A adds up to \mathbf{b}
  • \mathbf{b} \in \mathcal{C}(A)

How to tell if a vector is in a spanning space

Suppose we have a space V spanned by \mathbf{v}_{1}=(1,1,3,3), \mathbf{v}_{2}=(0,2,2,4), and and \mathbf{v}_{3}=(1,0,2,1)

One of these vectors is in V. Which one?

\mathbf{u}=(2,1,5,4) and \mathbf{w}=(1,0,0,0)

Define A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]

Then \mathbf{u} \in \mathcal{C}(A) if and only if A \mathbf{x}=\mathbf{u} has a solution (is consistent)

Solve both at once: [A|\mathbf{u}| \mathbf{w}]=\left[\begin{array}{lllll} 1 & 0 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 & 0 \\ 3 & 2 & 2 & 5 & 0 \\ 3 & 4 & 1 & 4 & 0 \end{array}\right] \text { with reduced row echelon form }\left[\begin{array}{rrrrr} 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]

\mathbf{u} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\},

but \mathbf{w} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}

\mathbf{u}=\left(2-c_{3}\right) \mathbf{v}_{1}+\frac{1}{2}\left(c_{3}-1\right) \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}

Form of general solution to a linear system

  • Suppose the system A \mathbf{x}=\mathbf{b} has a particular solution \mathbf{x}_{*}.

  • Then the general solution \mathbf{x} to this system can be described by the equation

\mathbf{x}=\mathbf{x}_{*}+\mathbf{z}

where \mathbf{z} runs over all elements of \mathcal{N}(A).

Solution set is the set of all translates of elements in the null space of A by some fixed vector.

When n is 2 or 3 this says that the solution set is either a single point, a line or a plane—not necessarily through the origin!

Example

Describe the solution sets to the system \begin{array}{r} x+2 y=3 \\ x+y+t=3 . \end{array}

\begin{aligned} & x=3-2 t \\ & y=t \\ & z=t . \end{aligned}

Null Space algorithm

Given an m \times n matrix A.

  1. Compute the reduced row echelon form R of A.

  2. Use R to find the general solution to the homogeneous system A \mathbf{x}=0.

  1. Write the general solution \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) to the homogeneous system in the form

\mathbf{x}=x_{i_{1}} \mathbf{w}_{1}+x_{i_{2}} \mathbf{w}_{2}+\cdots+x_{i_{n-r}} \mathbf{w}_{n-r}

where x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-r}} are the free variables.

  1. List the vectors \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-r}. These form a basis of \mathcal{N}(A).