More copilot insanity. I wrote the first sentence, and then it autocompleted as follows:
Have students put a dot in the center of the card and say this is the origin. . . . Have them draw a line and say this is the x-axis. . . . Have them draw a line perpendicular to the x-axis and say this is the y-axis.
Have them draw a line perpendicular to the x and y axes and say this is the z-axis.
Have them draw a line perpendicular to the x and y axes and say this is the w-axis.
Have them draw a line perpendicular to the x, y, and w axes and say this is the v-axis.
Have them draw a line perpendicular to the x, y, w, and v axes and say this is the u-axis.
Have them draw a line perpendicular to the x, y, w, v, and u axes and say this is the t-axis. Have them draw a line perpendicular to the x, y, w, v, u, and t axes and say this is the s-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, and s axes and say this is the r-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, and r axes and say this is the q-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, and q axes and say this is the p-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, q, and p axes and say this is the o-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, q, p, and o axes and say this is the n-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, q, p, o, and n axes and say this is the m-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, q, p, o, n, and m axes and say this is the l-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s, r, q, p, o, n, m, and l axes and say this is the k-axis. Have them draw a line perpendicular to the x, y, w, v, u, t, s…
For \mathbb{R}^3, we can find the normal vector by taking the cross product of two vectors in the plane.
Let \mathbf{i}, \mathbf{j}, and \mathbf{k} represent the standard basis \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}.
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right|
The cross product is orthogonal to both \mathbf{u} and \mathbf{v}: \mathbf{u} \cdot \mathbf{u} \times \mathbf{v}=0 and \mathbf{v} \cdot \mathbf{u} \times \mathbf{v}=0
We can use the cross product to find the normal vector to the plane, simply by taking the cross product of two vectors in the plane.
If the plane is specified ax + by + cz = d, then a normal vector is \vec a = ( a, b, c ).
Check:
Now take the cross product of these two vectors to find the normal vector:
\begin{aligned} \vec u \times \vec v \\ &= \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & d/b & -d/c \\ d/a & 0 & -d/c \end{array}\right| \\ &= - \mathbf{i} \left( \frac{d}{b} \frac{d}{c} \right) + \mathbf{j} \left( \frac{d}{a} \frac{d}{c} \right) - \mathbf{k} \left( \frac{d}{a} \frac{d}{b} \right) \\ &= -d^2 \left[ \left( \frac{1}{bc} \right) \mathbf{i} - \left( \frac{1}{ac} \right) \mathbf{j} + \left( \frac{1}{ab} \right) \mathbf{k} \right]\\ &= -\frac{d^2}{abc} \left[\left( a \right) \mathbf{i} - \left( b \right) \mathbf{j} + \left( c \right) \mathbf{k} \right]\\ \end{aligned}
This is parallel to \vec{a} = (a, b, c).
A hyperplane in \mathbb{R}^{n} is the set of all \mathbf{x} \in \mathbb{R}^{n} such that \mathbf{a} \cdot \mathbf{x}=b, where the nonzero vector \mathbf{a} \in \mathbb{R}^{n} and scalar b are given.
Let H be the hyperplane in \mathbb{R}^{n} defined by the equation \mathbf{a} \cdot \mathbf{x}=b and let \mathbf{x}_{*} \in H. Then
\mathbf{a}^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid \mathbf{a} \cdot \mathbf{y}=0\right\} is a subspace of \mathbb{R}^{n} of dimension n-1.
H=\mathbf{x}_{*}+\mathbf{a}^{\perp}=\left\{\mathbf{x}_{*}+\mathbf{y} \mid \mathbf{y} \in \mathbf{a}^{\perp}\right\}.
Find an equation that defines the plane containing the three (noncollinear) points P, Q, and R with coordinates (1,0,2),(2,1,0), and (3,1,1), respectively.
\begin{aligned} & \overrightarrow{P Q}=(2,1,0)-(1,0,2)=(1,1,-2) \\ & \overrightarrow{P R}=(3,1,1)-(1,0,2)=(2,1,-1) \end{aligned}
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -2 \\ 2 & 1 & -1 \end{array}\right|=\mathbf{i}-3 \mathbf{j}-\mathbf{k}
The normal vector is \mathbf{a}=(1,-3,-1).
The equation of the plane is \mathbf{a} \cdot \mathbf{x}=b
What is b? We can plug in any of the points and solve for it. Let’s use P:
b=\mathbf{a} \cdot \mathbf{P}=(1,-3,-1) \cdot(1,0,2)=1+0-2=-1.
Plane through the origin: \vec a\cdot \vec x = 0
Plane displaced from the origin: \vec a\cdot \vec x = q
Component of \vec x along the vector \vec a (scalar projection): \vec a\cdot \vec x / || \vec a ||
Projection of \vec x onto \vec a: \vec a / ||a|| \quad \vec a\cdot \vec x/||\vec a||
Projection of \vec x onto the plane for which \vec a is the normal vector, displaced by q \vec a from the origin: \vec x - projection onto the normal vector = $x - a (ax - q) $
Let \mathbf{u} and \mathbf{v} be vectors, \mathbf{v} \neq \mathbf{0}.
\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \text { and } \quad \mathbf{q}=\mathbf{u}-\mathbf{p}
Then \mathbf{p} is parallel to \mathbf{v}, \mathbf{q} is orthogonal to \mathbf{v}, and \mathbf{u}=\mathbf{p}+\mathbf{q}.
. . . We say \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} and \operatorname{orth}_{\mathbf{v}} \mathbf{u}=\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}
m \mathbf{x}-\mathbf{y} should be orthogonal to \mathbf{x}.
\begin{aligned} \mathbf{x} \cdot\left(m \mathbf{x}-\mathbf{y}\right) &=0 \\ m \mathbf{x} \cdot \mathbf{x}-\mathbf{x} \cdot \mathbf{y} &=0 \\ m \mathbf{x} \cdot \mathbf{x} &=\mathbf{x} \cdot \mathbf{y} \\ \mathbf{x} \cdot \mathbf{x}\quad m &=\mathbf{x} \cdot \mathbf{y} \\ \end{aligned}
Change to matrix notation:
\mathbf{x} \rightarrow \mathbf{A}\text{,}\qquad \mathbf{y} \rightarrow \mathbf{b}\text{,}\qquad m \rightarrow \mathbf{x}
Linear equation becomes \mathbf{A} \mathbf{x}= \mathbf{b}. But it’s not consistent if the data aren’t on the straight line. Best fit equation becomes
\begin{aligned} \mathbf{x} \cdot \mathbf{x}\quad m &=\mathbf{x} \cdot \mathbf{y} \\ \mathbf{A}^{T} \mathbf{A} \mathbf{x} &=\mathbf{A}^{T} \mathbf{b} \end{aligned}
These are the normal equations. We solve them to find \mathbf{x} which corresponds to the best fit.
When we have a single predictor variable and a single response variable, the \mathbf{x} we are trying to find is just a scalar.
\mathbf{A} is a column vector of the predictor variable, call it now \mathbf{a}
\mathbf{b} is a column vector of the response variable.
The normal equations become
\begin{aligned} \mathbf{a}^{T} \mathbf{a} \mathbf{x} &=\mathbf{a}^{T} \mathbf{b} \\ \mathbf{a} \cdot \mathbf{a} \mathbf{x} &=\mathbf{a} \cdot \mathbf{b} \\ x = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \end{aligned}
This is the formula for the slope of the best fit line.
You have a scale that measures in unknown units.
You have items that you know weigh approximately 2, 5, and 7 pounds (approximately.)
You measure the scale’s output for these items and get 0.7,2.4, and 3.2. What is the conversion factor from the scale’s units to pounds?
You can set up the system of equations:
\mathbf{a}= \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix} and \mathbf{b}= \begin{bmatrix} 0.7 \\ 2.4 \\ 3.2 \end{bmatrix}
Can you find \mathbf{x} such that \mathbf{a} \cdot \mathbf{x} = \mathbf{b}?
No, it’s inconsistent. But you can find the best fit.
\begin{aligned} \mathbf{a}^{T} \mathbf{a} \mathbf{x} &=\mathbf{a}^{T} \mathbf{b} \\ \begin{bmatrix} 2 & 5 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix} x &= \begin{bmatrix} 2 & 5 & 7 \end{bmatrix} \begin{bmatrix} 0.7 \\ 2.4 \\ 3.2 \end{bmatrix} x = \frac{2 \cdot 0.7 + 5 \cdot 2.4 + 7 \cdot 3.2}{2^2 + 5^2 + 7^2} \approx 0.459 \end{aligned}
So to go from pounds to the scale’s units, multiply by 0.459.
(This is the opposite of what the book did – they found the conversion factor from the scale’s units to pounds.)