
Ch4 Lecture 1

Geometrical View of Column Space

Why column space matters

• Consistency of 𝐴x = b: solvable exactly when b ∈ 𝒞(𝐴) (the “reachable” set).
• Least squares: Later today: when b ∉ 𝒞(𝐴), we find the closest point in 𝒞(𝐴) to b

(projection onto the column space).
• Seeing 𝒞(𝐴) as a line or plane makes this concrete.

Example: a rank-1 matrix

𝐴 = ⎡⎢
⎣

1 2 0
1 2 0
0 0 0

⎤⎥
⎦

Columns are a1 = (1, 1, 0), a2 = 2a1, a3 = 0.

. . .

The only vectors that we can form by taking linear combinations of the columns of 𝐴 are

multiples of ⎡⎢
⎣

1
1
0
⎤⎥
⎦

.

. . .

A basis for the column space is just this single vector:
⎧{
⎨{⎩

⎡⎢
⎣

1
1
0
⎤⎥
⎦

⎫}
⎬}⎭

.

. . .

Because there is only one vector in the basis, the matrix has rank 1.
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Visualizing the column space of our rank-1 matrix

Here are some vectors that are in the column space of 𝐴:

⎡⎢
⎣

1
1
0
⎤⎥
⎦

, ⎡⎢
⎣

2
2
0
⎤⎥
⎦

, ⎡⎢
⎣

3
3
0
⎤⎥
⎦

, ⎡⎢
⎣

4
4
0
⎤⎥
⎦

, ⎡⎢
⎣

5
5
0
⎤⎥
⎦

, ⎡⎢
⎣

−1
−1
0

⎤⎥
⎦

, ⎡⎢
⎣

−2
−2
0

⎤⎥
⎦

. . .

If we draw these vectors in ℝ3, we see that they all lie on the same line. This line is the column
space of 𝐴.

(draw it)

Remember, the column space tells us which vectors b can be written as 𝐴x for some x.

. . .

So if a vector b is not on this line, we know that there is no solution to 𝐴x = b.

. . .

(draw a b slightly off the line, and one very far off the line)

Example: a rank-2 matrix

𝐴 = ⎡⎢
⎣

1 1 2
1 2 3
2 1 3

⎤⎥
⎦

. . .

The first two columns are independent, but the third is a linear combination of the first two.

. . .

We can make a basis for the column space by taking the first two columns:
⎧{
⎨{⎩

⎡⎢
⎣

1
1
2
⎤⎥
⎦

, ⎡⎢
⎣

1
2
1
⎤⎥
⎦

⎫}
⎬}⎭

.
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𝒞(𝐴) = span
⎧{
⎨{⎩

⎡⎢
⎣

1
1
2
⎤⎥
⎦

, ⎡⎢
⎣

1
2
1
⎤⎥
⎦

⎫}
⎬}⎭

Here are some vectors that are in the column space of 𝐴:

⎡⎢
⎣

1
1
2
⎤⎥
⎦

= 1 ⋅ a1 + 0 ⋅ a2, ⎡⎢
⎣

1
2
1
⎤⎥
⎦

= 0 ⋅ a1 + 1 ⋅ a2,

⎡⎢
⎣

2
3
3
⎤⎥
⎦

= 1 ⋅ a1 + 1 ⋅ a2, ⎡⎢
⎣

3
3
6
⎤⎥
⎦

= 3 ⋅ a1 + 0 ⋅ a2

Visualizing the column space of our rank-2 matrix

import plotly.graph_objects as go
import numpy as np

# Column space basis and example vectors (all in C(A))
a1 = np.array([1, 1, 2])
a2 = np.array([1, 2, 1])
example_vectors = [

np.array([1, 1, 2]),
np.array([1, 2, 1]),
np.array([2, 3, 3]),
np.array([3, 3, 6]),

]

# Create figure (plane not shown, only vectors)
fig = go.Figure()

# Colors for each vector for contrast
colors = ['crimson', 'darkorange', 'seagreen', 'royalblue']
for v, c in zip(example_vectors, colors):

fig.add_trace(go.Scatter3d(
x=[0, v[0]], y=[0, v[1]], z=[0, v[2]],
mode='lines+markers',
line=dict(width=7, color=c),

3



marker=dict(size=7, color=c),
showlegend=False # Hide legend

))

fig.update_layout(
title=dict(text="Column space and example vectors", x=0.5),
scene=dict(

xaxis_title="x",
yaxis_title="y",
zaxis_title="z",
aspectmode='data',
camera=dict(eye=dict(x=1.4, y=1.4, z=1.1))

),
margin=dict(l=0, r=0, b=0, t=30),
height=420,
template='plotly_white',
showlegend=False # Hide legend

)
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

import plotly.graph_objects as go
import numpy as np

# Column space basis and example vectors (all in C(A))
a1 = np.array([1, 1, 2])
a2 = np.array([1, 2, 1])
example_vectors = [

np.array([1, 1, 2]),
np.array([1, 2, 1]),
np.array([2, 3, 3]),
np.array([3, 3, 6]),

]
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# Create figure
fig = go.Figure()

# Add the filled plane span{a1, a2} through origin (large extent)
s = np.linspace(-3.75, 3.75, 24)
t = np.linspace(-3.75, 3.75, 24)
S, T = np.meshgrid(s, t)
X = S * a1[0] + T * a2[0]
Y = S * a1[1] + T * a2[1]
Z = S * a1[2] + T * a2[2]
fig.add_trace(go.Surface(

x=X, y=Y, z=Z,
colorscale=[[0, 'lightblue'], [1, 'lightblue']],
opacity=0.45,
showscale=False,
name="Plane"

))

# Colors for each vector for contrast
colors = ['crimson', 'darkorange', 'seagreen', 'royalblue']
for v, c in zip(example_vectors, colors):

fig.add_trace(go.Scatter3d(
x=[0, v[0]], y=[0, v[1]], z=[0, v[2]],
mode='lines+markers',
line=dict(width=7, color=c),
marker=dict(size=7, color=c),
showlegend=False # Hide legend

))

fig.update_layout(
title=dict(text="Column space (plane filled) and example vectors", x=0.5),
scene=dict(

xaxis_title="x",
yaxis_title="y",
zaxis_title="z",
aspectmode='data',
camera=dict(eye=dict(x=0.9, y=0.9, z=0.7))

),
margin=dict(l=0, r=0, b=0, t=30),
height=420,
template='plotly_white',
showlegend=False
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)
fig.show()

Unable to display output for mime type(s): text/html

General form of the column space in ℝ3

In ℝ3, the dimension of 𝒞(𝐴) equals the rank 𝑟 of 𝐴:

• Rank 1: 𝒞(𝐴) is a line (all columns are multiples of one vector).
• Rank 2: 𝒞(𝐴) is a plane (span of two independent columns).
• Rank 3: 𝒞(𝐴) is all of ℝ3.

General form of the column space in ℝ𝑛

In ℝ𝑛, the dimension of 𝒞(𝐴) equals the rank 𝑟 of 𝐴:

• Rank 1: 𝒞(𝐴) is a line (all columns are multiples of one vector).
• Rank 2: 𝒞(𝐴) is a plane (span of two independent columns).
• Rank n-1: 𝒞(𝐴) is a hyperplane (span of n-1 independent columns in ℝ𝑛).

Input and output spaces

The pictures we have drawn of the column space represent the possible outputs b from the
linear system 𝐴x = b.

. . .

In our example, all potential outputs b live in ℝ3, but the only ones that are actually reachable
are those that are on a line or a plane within ℝ3. So the column space of 𝐴 is a special subspace
of the output space.

. . .

Formally, we call the output space the codomain of 𝐴, and the column space of 𝐴 is a
subspace of the codomain.

. . .

But there’s another space that’s important: the space of all the possible inputs x that can be
fed into 𝐴. We call this the domain of 𝐴.

In our examples so far, because the vectors x are all in ℝ3, the domain is also ℝ3.
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Domain and codomain for a rectangular matrix

Let’s consider a simple 2x3 matrix:

𝐹 = [1 2 0
1 2 0]

. . .

For the system 𝐹x = b, the possible inputs x are all in ℝ3, and the possible outputs b are all
in ℝ2.

. . .

For example, if we take x = ⎡⎢
⎣

1
2
3
⎤⎥
⎦

, then

𝐹x = [1 2 0
1 2 0] ⎡⎢

⎣

1
2
3
⎤⎥
⎦

= [5
5] = b

So x = ⎡⎢
⎣

1
2
3
⎤⎥
⎦

is in the domain of 𝐹 , and b = [5
5] is in the codomain of 𝐹 .

Column space and null space are special subspaces

We know that b = [5
5] is in the column space of 𝐹 because we constructed it from multiplying

𝐹 by x.

. . .

There are other vectors, such as [ 1
−1], that are in the codomain of 𝐹 but not in its column

space.

. . .

The column space is a subspace of the codomain, and it tells us something about the matrix
𝐹 .
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Is there a similar special subset of the vectors in the domain that tells us something about the
matrix 𝐹? There is!

. . .

Yes, it’s the null space of 𝐹 . The null space of 𝐹 is the set of all vectors x such that 𝐹x = 0.

. . .

For example, the vector ⎡⎢
⎣

1
−1
0

⎤⎥
⎦

is in the null space of 𝐹 because

𝐹 ⎡⎢
⎣

1
−1
0

⎤⎥
⎦

= [1 2 0
1 2 0] ⎡⎢

⎣

1
−1
0

⎤⎥
⎦

= [1 ⋅ 1 + 2 ⋅ (−1) + 0 ⋅ 0
1 ⋅ 1 + 2 ⋅ (−1) + 0 ⋅ 0] = [0

0] = 0

Visualizing the null space

If we know a basis for the null space, we can visualize it in the domain.

. . .

We haven’t learned how to find these yet, but for our example matrix 𝐹 = [1 2 0
1 2 0], I’ll just

tell you that the basis for the null space is
⎧{
⎨{⎩

⎡⎢
⎣

−2
1
0

⎤⎥
⎦

, ⎡⎢
⎣

0
0
1
⎤⎥
⎦

⎫}
⎬}⎭

.

. . .

So the null space will form a plane in ℝ3.

Visualizing both the column space and the null space

But because the null space is a subspace of the input space (the domain) and the column
space is a subspace of the output space (the codomain), we can’t visualize them together in
the same picture.

So we’ll visualize them separately.
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The column space 𝒞(𝐹) is all vectors in ℝ2 that are multiples of [1
1].

The null space 𝒩(𝐹) is that spanned by the vectors ⎡⎢
⎣

−2
1
0

⎤⎥
⎦

and ⎡⎢
⎣

0
0
1
⎤⎥
⎦

.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(12, 5))

# First subplot: column space in 2D (a line in R^2)
ax1 = fig.add_subplot(1, 2, 1)
# Line through origin along [1, 1]
t = np.linspace(-3, 3, 100)
line = np.vstack((t, t)) # [t, t] for t in R

ax1.plot(line[0], line[1], color='royalblue', lw=2, label='Column space')
ax1.scatter([0], [0], color='black') # origin
ax1.set_xlabel("$b_1$")
ax1.set_ylabel("$b_2$")
ax1.set_title(r"Column space in $\mathbb{R}^2$")
ax1.grid(True)
ax1.set_aspect('equal')
ax1.legend()

# Second subplot: null space in 3D (a plane in R^3)
from mpl_toolkits.mplot3d import Axes3D # noqa: F401

ax2 = fig.add_subplot(1, 2, 2, projection='3d')

# The null space plane: spanned by [-2, 1, 0] and [0, 0, 1]
s = np.linspace(-2, 2, 20)
t = np.linspace(-2, 2, 20)
S, T = np.meshgrid(s, t)
X = -2*S
Y = S
Z = T
# Plane points: for each (s, t): s * [-2,1,0] + t * [0,0,1]
ax2.plot_surface(X, Y, Z, alpha=0.4, color='tomato', rstride=1, cstride=1, edgecolor='none')
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# Draw the two basis vectors of the plane
ax2.quiver(0, 0, 0, -2, 1, 0, color='maroon', length=2.2, normalize=True, linewidth=2)
ax2.quiver(0, 0, 0, 0, 0, 1, color='darkred', length=2.2, normalize=True, linewidth=2)

ax2.set_xlabel("$x_1$")
ax2.set_ylabel("$x_2$")
ax2.set_zlabel("$x_3$")
ax2.set_title("Null space in $\mathbb{R}^3$")
ax2.view_init(elev=18, azim=121)

plt.tight_layout()
plt.show()

3 2 1 0 1 2 3
b1

3

2

1

0

1

2

3

b 2

Column space in 2

Column space

x1 432101234
x2

2.01.51.00.50.00.51.01.52.0

x 3

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Null space in 3

Row space and left null space

The row space of a matrix 𝐴 is the subspace of ℝ𝑚 spanned by the rows of 𝐴. It is also the
column space of 𝐴𝑇 .

The left null space of a matrix 𝐴 is just the null space of 𝐴𝑇 .

Skills: Fundamental Subspaces (Pictures)

• Interpret 𝒞(𝐴) geometrically (line, plane, or hyperplane) from the rank of 𝐴.
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• Distinguish between the domain (where x lives) and codomain (where 𝐴x lives) for a
matrix.

• Identify the column space as a subspace of the codomain; the null space as a subspace
of the domain.

• Given a basis for 𝒩(𝐴), describe its shape (line, plane, etc.) in the input space.

Planes, Hyperplanes, and Projections

The plane through the origin

Because the column space is so often a plane, let’s build our intuition about planes.

A plane through the origin is the set of all vectors ⃗𝑥 such that ⃗𝑎 ⋅ ⃗𝑥 = 0, where the nonzero
vector ⃗𝑎 is a normal vector to the plane (we often take ⃗𝑎 of unit length).

. . .

Finding the normal vector when we know two vectors in the plane

For ℝ3, we can find the normal vector by taking the cross product of two vectors in the plane.

Let i, j, and k represent the standard basis e1, e2, e3.

u × v = (𝑢2𝑣3 − 𝑢3𝑣2) i + (𝑢3𝑣1 − 𝑢1𝑣3) j + (𝑢1𝑣2 − 𝑢2𝑣1) k = ∣
i j k

𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

∣

. . .

The cross product is orthogonal to both u and v: u ⋅ (u × v) = 0 and v ⋅ (u × v) = 0.

. . .

We can use the cross product to find the normal vector to the plane by taking the cross product
of two vectors in the plane.
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Finding the normal vector from the equation of the plane

If the plane is specified by 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑, then a normal vector is ⃗𝑎 = (𝑎, 𝑏, 𝑐).
. . .

Check (optional verification):

1. Find three points on the plane: e.g. (0, 0, 𝑑/𝑐), (0, 𝑑/𝑏, 0), (𝑑/𝑎, 0, 0) (when 𝑎, 𝑏, 𝑐 ≠ 0).
2. Form two displacement vectors in the plane, e.g. 𝑢⃗ = (0, 𝑑/𝑏, −𝑑/𝑐) and ⃗𝑣 =

(𝑑/𝑎, 0, −𝑑/𝑐).

. . .

Verifying the normal from 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

Take the cross product 𝑢⃗ × ⃗𝑣:

𝑢⃗ × ⃗𝑣 = ∣
i j k
0 𝑑/𝑏 −𝑑/𝑐

𝑑/𝑎 0 −𝑑/𝑐
∣

= −𝑑2

𝑏𝑐 i + 𝑑2

𝑎𝑐 j − 𝑑2

𝑎𝑏k = − 𝑑2

𝑎𝑏𝑐 (𝑎i − 𝑏j + 𝑐k)

This is parallel to ⃗𝑎 = (𝑎, 𝑏, 𝑐).
. . .

Distances from the plane

The distance from a point ⃗𝑥 to the plane ⃗𝑎 ⋅ ⃗𝑥 = 0 is the scalar projection of ⃗𝑥 onto the
normal:

• If ⃗𝑎 is unit length: distance = | ⃗𝑎 ⋅ ⃗𝑥|.
• If not: distance = | ⃗𝑎 ⋅ ⃗𝑥|/‖ ⃗𝑎‖.

. . .

Closest point on the plane (through the origin)

The displacement from ⃗𝑥 to the closest point on the plane has length | ⃗𝑎 ⋅ ⃗𝑥|/‖ ⃗𝑎‖ and direction
along ⃗𝑎.

. . .
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Projection onto the plane (through the origin)

The closest point on the plane to ⃗𝑥 is ⃗𝑥 − ⃗𝑎( ⃗𝑥 ⋅ ⃗𝑎)/‖ ⃗𝑎‖2 — i.e., ⃗𝑥 minus the projection of ⃗𝑥 onto
⃗𝑎.

A plane not at the origin

A plane displaced from the origin can be described by a normal ⃗𝑎 and a scalar 𝑞: the plane is
displaced by 𝑞 ⃗𝑎 from the origin.

. . .

Equation of the displaced plane

Points ⃗𝑥 on the plane satisfy ⃗𝑎 ⋅ ⃗𝑥 = 𝑞 (with ⃗𝑎 unit length, 𝑞 is the signed distance of the plane
from the origin).

. . .

Hyperplane

A hyperplane in ℝ𝑛 is the set of all x ∈ ℝ𝑛 such that a ⋅ x = 𝑏, where the nonzero vector
a ∈ ℝ𝑛 and scalar 𝑏 are given.

. . .

Let 𝐻 be the hyperplane in ℝ𝑛 defined by a ⋅ x = 𝑏 and let x∗ ∈ 𝐻. Then

(1) a⟂ = {y ∈ ℝ𝑛 ∣ a ⋅ y = 0} is a subspace of ℝ𝑛 of dimension 𝑛 − 1.

(2) 𝐻 = x∗ + a⟂ = {x∗ + y ∣ y ∈ a⟂}.

. . .
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Example: plane through three points

Find an equation that defines the plane containing the three (noncollinear) points 𝑃 , 𝑄, and
𝑅 with coordinates (1, 0, 2), (2, 1, 0), and (3, 1, 1), respectively.

. . .

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 = (2, 1, 0) − (1, 0, 2) = (1, 1, −2)
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑅 = (3, 1, 1) − (1, 0, 2) = (2, 1, −1)

. . .

u × v = ∣
i j k
1 1 −2
2 1 −1

∣ = i − 3j − k

. . .

The normal vector is a = (1, −3, −1).
. . .

The equation of the plane is a ⋅ x = 𝑏. Using 𝑃 : 𝑏 = a ⋅ P = (1, −3, −1) ⋅ (1, 0, 2) = 1 + 0 − 2 =
−1.

. . .

So the plane is 𝑥 − 3𝑦 − 𝑧 = −1.

Projections to the displaced plane

The closest point on the hyperplane ⃗𝑎 ⋅ ⃗𝑥 = 𝑞 to a point ⃗𝑥 is ⃗𝑥 − ⃗𝑎( ⃗𝑎 ⋅ ⃗𝑥 − 𝑞) (for unit ⃗𝑎).

. . .

Summary: planes and projections

• Plane through the origin: ⃗𝑎 ⋅ ⃗𝑥 = 0.
• Plane displaced: ⃗𝑎 ⋅ ⃗𝑥 = 𝑞.
• Scalar projection of ⃗𝑥 onto ⃗𝑎: ⃗𝑎 ⋅ ⃗𝑥/‖ ⃗𝑎‖.
• Vector projection of ⃗𝑥 onto ⃗𝑎: 𝑎⃗

‖𝑎⃗‖
𝑎⃗⋅𝑥⃗
‖𝑎⃗‖ .

• Projection of ⃗𝑥 onto the plane ⃗𝑎 ⋅ ⃗𝑥 = 𝑞: ⃗𝑥 − ⃗𝑎( ⃗𝑎 ⋅ ⃗𝑥 − 𝑞).

. . .
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Projection formula for vectors

Let u and v be vectors, v ≠ 0.

p = v ⋅ u
v ⋅ vv and q = u − p

. . .

Then p is parallel to v, q is orthogonal to v, and u = p + q.

. . .

We write projv u = v⋅u
v⋅v v and orthv u = u − projv u.

. . .

Skills: Planes and Projections

• Write the equation of a plane (through the origin or displaced) using a normal vector.
• Find a normal to a plane from two vectors in the plane (cross product in ℝ3) or from

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑.
• Compute distance from a point to a plane and the projection of a point onto a plane.
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• Use projv u and orthv u.

. . .

Least Squares

Least squares: project b onto 𝒞(𝐴)

When 𝐴x = b is inconsistent, b is not in the column space. Least squares finds x̂ so that 𝐴x̂
is the closest point in 𝒞(𝐴) to b—i.e., the projection of b onto the plane 𝒞(𝐴). The residual
b − 𝐴x̂ is perpendicular to 𝒞(𝐴).
. . .

import plotly.graph_objects as go
import numpy as np

# C(A) = xy-plane; take b = (0, 0, 1) so projection = (0,0,0), residual = (0,0,1)
s = np.linspace(-1.2, 1.2, 15)
t = np.linspace(-1.2, 1.2, 15)
S, T = np.meshgrid(s, t)
fig = go.Figure()
fig.add_trace(go.Surface(x=S, y=T, z=np.zeros_like(S), colorscale=[[0,'lightblue'],[1,'lightblue']], opacity=0.6, showscale=False, name=r"$\mathcal{C}(A)$"))
# b
fig.add_trace(go.Scatter3d(x=[0], y=[0], z=[1], mode='markers+text', text=[r"$\mathbf{b}$"], textposition='top center',

marker=dict(size=10, color='red', symbol='diamond'), name=r"$\mathbf{b}$"))
# projection = origin
fig.add_trace(go.Scatter3d(x=[0], y=[0], z=[0], mode='markers+text', text=[r"$\widehat{\mathbf{b}}$"], textposition='bottom center',

marker=dict(size=10, color='green', symbol='square'), name=r"$\widehat{\mathbf{b}}$"))
# residual from (0,0,0) to (0,0,1)
fig.add_trace(go.Scatter3d(x=[0, 0], y=[0, 0], z=[0, 1], mode='lines', line=dict(color='purple', width=6, dash='dash'), name="residual"))
fig.update_layout(scene=dict(xaxis_title="x", yaxis_title="y", zaxis_title="z", aspectmode='data',

camera=dict(eye=dict(x=1.3, y=1.3, z=1.0))),
title=dict(text=r"Projection of b onto C(A): residual � plane", x=0.5),
margin=dict(l=0, r=0, b=0, t=50), template='plotly_white', height=420)

fig.show()

Unable to display output for mime type(s): text/html

. . .
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Motivation: fitting a line to data

• We have data (𝑥𝑖, 𝑦𝑖) and want a line 𝑦 ≈ 𝑚𝑥 (or 𝑦 ≈ 𝑚𝑥 + 𝑏).
• The system y = 𝑚x is usually inconsistent.
• We choose 𝑚 so that the residuals y − 𝑚x are as small as possible in a precise sense.

. . .

From ℝ2 to ℝ𝑛

• Think of the predictor values as a vector x ∈ ℝ𝑛 and the response values as y ∈ ℝ𝑛.
• A perfect linear relation means y = 𝑚x for some scalar 𝑚.

. . .

Imperfect data

When data are not on a line, y − 𝑚x ≠ 0. The vector y − 𝑚x is the residual vector; we
minimize ‖y − 𝑚x‖2.

. . .

Best choice of 𝑚

The best 𝑚 minimizes ‖y − 𝑚x‖2. Geometrically, that happens when the residual y − 𝑚x is
orthogonal to x.

. . .

Normal equation: one predictor

𝑚x − y should be orthogonal to x, so x ⋅ (𝑚x − y) = 0.

𝑚x ⋅ x − x ⋅ y = 0
𝑚 x ⋅ x = x ⋅ y

. . .

In matrix notation: x → A, y → b, 𝑚 → x. Then Ax = b is inconsistent; the best fit
satisfies

A𝑇 Ax = A𝑇 b
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These are the normal equations.

. . .

Single predictor: scalar case

When there is one predictor and one response, x (the unknown) is a scalar. Write the predictor
vector as a and the response vector as b. Then:

a𝑇 a 𝑥 = a𝑇 b ⇒ 𝑥 = a ⋅ b
a ⋅ a

This is the slope of the least-squares line (through the origin).

. . .

Example: scale calibration

You have a scale that measures in unknown units. You have items of known weight approxi-
mately 2, 5, and 7 pounds. You measure the scale output and get 0.7, 2.4, and 3.2. What is
the conversion factor from the scale’s units to pounds?

. . .

Set a = [2, 5, 7]𝑇 and b = [0.7, 2.4, 3.2]𝑇 . We want 𝑥 such that a ⋅ 𝑥 = b (componentwise);
the system is inconsistent, so we use least squares.

. . .

a𝑇 a 𝑥 = a𝑇 b ⇒ 𝑥 = 2(0.7) + 5(2.4) + 7(3.2)
22 + 52 + 72 ≈ 0.459

So to convert from scale units to pounds, multiply by ≈ 0.459 (i.e., scale reading ×0.459 ≈
pounds).

. . .

(Book may use the opposite convention: conversion from pounds to scale units.)

. . .
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Skills: Least Squares

• Set up the least-squares problem when Ax = b is inconsistent: minimize ‖Ax − b‖2.
• Write and use the normal equations A𝑇 Ax = A𝑇 b.
• For a single predictor (vector a, response b), compute the best-fit scalar 𝑥 = (a⋅b)/(a⋅a).
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