

Glossary: A Dictionary for Linear Algebra

Adjacency matrix of a graph Square matrix with $a_{i j}=1$ when there is an edge from node i to node j; otherwise $a_{i j}=0$. $A=A^{\mathrm{T}}$ for an undirected graph.

Affine transformation $T(v)=A v+v_{0}=$ linear transformation plus shift.
Associative Law $(A B) C=A(B C) \quad$ Parentheses can be removed to leave $A B C$.
Augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right] \quad A x=b$ is solvable when b is in the column space of A; then $\left[\begin{array}{ll}A & b\end{array}\right]$ has the same rank as A. Elimination on $\left[\begin{array}{ll}A & b\end{array}\right]$ keeps equations correct.

Back substitution Upper triangular systems are solved in reverse order x_{n} to x_{1}.
Basis for \mathbf{V} Independent vectors v_{1}, \ldots, v_{d} whose linear combinations give every v in V. A vector space has many bases!

Big formula for n by n determinants $\operatorname{det}(A)$ is a sum of $n!$ terms, one term for each permutation P of the columns. That term is the product $a_{1 \alpha} \cdots a_{n \omega}$ down the diagonal of the reordered matrix, times $\operatorname{det}(P)= \pm 1$.

Block matrix A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns.

Block multiplication of $A B$ is allowed if the block shapes permit (the columns of A and rows of B must be in matching blocks).

Cayley-Hamilton Theorem $\quad p(\lambda)=\operatorname{det}(A-\lambda I)$ has $p(A)=$ zero matrix.
Change of basis matrix M The old basis vectors v_{j} are combinations $\sum m_{i j} w_{i}$ of the new basis vectors. The coordinates of $c_{1} v_{1}+\cdots+c_{n} v_{n}=d_{1} w_{1}+\cdots+d_{n} w_{n}$ are related by $d=M c$. (For $n=2$, set $v_{1}=m_{11} w_{1}+m_{21} w_{2}, v_{2}=m_{12} w_{1}+m_{22} w_{2}$.)

Characteristic equation $\operatorname{det}(A-\lambda I)=0 \quad$ The n roots are the eigenvalues of A.
Cholesky factorization $A=C C^{\mathrm{T}}=(L \sqrt{D})(L \sqrt{D})^{\mathrm{T}}$ for positive definite A.

Circulant matrix C Constant diagonals wrap around as in cyclic shift S. Every circulant is $c_{0} I+c_{1} S+\cdots+c_{n-1} S^{n-1}$. $C x=$ convolution $c * x$. Eigenvectors in F.

Cofactor $C_{i j}$ Remove row i and column j; multiply the determinant by $(-1)^{i+j}$.
Column picture of $A x=b \quad$ The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space $C(A)$.

Column space $C(A) \quad$ Space of all combinations of the columns of A.
Commuting matrices $A B=B A \quad$ If diagonalizable, they share n eigenvectors.
Companion matrix Put c_{1}, \ldots, c_{n} in row n and put $n-11 \mathrm{~s}$ along diagonal 1. Then $\operatorname{det}(A-\lambda I)= \pm\left(c_{1}+c_{2} \lambda+c_{3} \lambda^{2}+\cdots\right)$.

Complete solution $x=x_{p}+x_{n}$ to $A x=b \quad\left(\right.$ Particular $\left.x_{p}\right)+\left(x_{n}\right.$ in nullspace $)$.
Complex conjugate $\quad \bar{z}=a-i b$ for any complex number $z=a+i b$.Then $z \bar{z}=|z|^{2}$.
Condition number $\operatorname{cond}(A)=\kappa(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{\max } / \sigma_{\min } \quad$ In $A x=b$, the relative change $\|\delta x\| /\|x\|$ is less than cond (A) times the relative change $\|\delta b\| /\|b\|$. Condition numbers measure the sensitivity of the output to change in the input.

Conjugate Gradient Method A sequence of steps to solve positive definite $A x=b$ by minimizing $\frac{1}{2} x^{\mathrm{T}} A x-x^{\mathrm{T}} b$ over growing Krylov subspaces.

Covariance matrix Σ When random variables x_{i} have mean $=$ average value $=0$, their covariances $\Sigma_{i j}$ are the averages of $x_{i} x_{j}$. With means \bar{x}_{i}, the matrix $\Sigma=$ mean of $(x-\bar{x})(x-\bar{x})^{\mathrm{T}}$ is positive (semi)definite; it is diagonal if the x_{i} are independent.

Cramer's Rule for $A x=b \quad B_{j}$ has b replacing column j of A, and $x_{j}=\left|B_{j}\right| /|A|$.
Cross product $u \times v$ in $\mathbf{R}^{3} \quad$ Vector perpendicular to u and v, length $\|u\|\|v\||\sin \theta|=$ parallelogram area, computed as the "determinant" of $\left[\begin{array}{llllllll}i & k ; & u_{1} & u_{2} & u_{3} ; & v_{1} & v_{2} & v_{3}\end{array}\right]$.

Cyclic shift S Permutation with $s_{21}=1, s_{32}=1, \ldots$, finally $s_{1 n}=1$. Its eigenvalues are nth roots $e^{2 \pi i k / n}$ of 1 ; eigenvectors are columns of the Fourier matrix F.

Determinant $|A|=\operatorname{det}(A) \quad$ Defined by $\operatorname{det} I=1$, sign reversal for row exchange, and linearity in each row. Then $|A|=0$ when A is singular. Also $|A B|=|A||B|$, $\left|A^{-1}\right|=1 /|A|$, and $\left|A^{\mathrm{T}}\right|=|A|$. The big formula for $\operatorname{det}(A)$ has a sum of $n!$ terms, the cofactor formula uses determinants of size $n-1$, volume of $\operatorname{box}=|\operatorname{det}(A)|$.

Diagonal matrix $D \quad d_{i j}=0$ if $i \neq j$. Block-diagonal: zero outside square blocks $D_{i i}$.
Diagonalizable matrix A Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then $S^{-1} A S=\Lambda=$ eigenvalue matrix.

Diagonalization $\Lambda=S^{-1} A S \quad \Lambda=$ eigenvalue matrix and $S=$ eigenvector matrix. A must have n independent eigenvectors to make S invertible. All $A^{k}=S \Lambda^{k} S^{-1}$.

Dimension of vector space $\operatorname{dim}(\mathbf{V})=$ number of vectors in any basis for \mathbf{V}.
Distributive Law $A(B+C)=A B+A C \quad$ Add then multiply, or multiply then add.
Dot product $x^{\mathrm{T}} y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ Complex dot product is $\bar{x}^{\mathrm{T}} y$. Perpendicular vectors have zero dot product. $(A B)_{i j}=($ row i of $A) \cdot($ column j of $B)$.

Echelon matrix U The first nonzero entry (the pivot) in each row comes after the pivot in the previous row. All zero rows come last.

Eigenvalue λ and eigenvector $x \quad A x=\lambda x$ with $x \neq 0$, so $\operatorname{det}(A-\lambda I)=0$.
Eigshow Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java).
Elimination A sequence of row operations that reduces A to an upper triangular U or to the reduced form $R=\operatorname{rref}(A)$. Then $A=L U$ with multipliers $\ell_{i j}$ in L, or $P A=L U$ with row exchanges in P, or $E A=R$ with an invertible E.

Elimination matrix $=$ Elementary matrix $E_{i j} \quad$ The identity matrix with an extra $-\ell_{i j}$ in the i, j entry $(i \neq j)$. Then $E_{i j} A$ subtracts $\ell_{i j}$ times row j of A from row i.

Ellipse (or ellipsoid) $x^{\mathrm{T}} A x=1 \quad A$ must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths $1 / \sqrt{\lambda}$. (For $\|x\|=1$ the vectors $y=A x$ lie on the ellipse $\left\|A^{-1} y\right\|^{2}=y^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} y=1$ displayed by eigshow; axis lengths σ_{i}.)

Exponential $\quad e^{A t}=I+A t+(A t)^{2} / 2!+\cdots$ has derivative $A e^{A t} ; e^{A t} u(0)$ solves $u^{\prime}=A u$.
Factorization $A=L U \quad$ If elimination takes A to U without row exchanges, then the lower triangular L with multipliers $\ell_{i j}$ (and $\ell_{i i}=1$) brings U back to A.

Fast Fourier Transform (FFT) A factorization of the Fourier matrix F_{n} into $\ell=\log _{2} n$ matrices S_{i} times a permutation. Each S_{i} needs only $n / 2$ multiplications, so $F_{n} x$ and $F_{n}^{-1} c$ can be computed with $n \ell / 2$ multiplications. Revolutionary.

Fibonacci numbers $0,1,1,2,3,5, \ldots$ satisfy
$F_{n}=F_{n-1}+F_{n-2}=\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) /\left(\lambda_{1}-\lambda_{2}\right)$. Growth rate $\lambda_{1}=(1+\sqrt{5}) / 2$ the largest eigenvalue of the Fibonacci matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

Four fundamental subspaces of $A \quad \boldsymbol{C}(A), \boldsymbol{N}(A), \boldsymbol{C}\left(A^{\mathrm{T}}\right), \boldsymbol{N}\left(A^{\mathrm{T}}\right)$.
Fourier matrix $F \quad$ Entries $F_{j k}=e^{2 \pi i j k / n}$ give orthogonal columns $\bar{F}^{\mathrm{T}} F=n I$. Then $y=F c$ is the (inverse) Discrete Fourier Transform $y_{j}=\sum c_{k} e^{2 \pi i j k / n}$.

Free columns of A Columns without pivots; combinations of earlier columns.

Free variable x_{i} Column i has no pivot in elimination. We can give the $n-r$ free variables any values, then $A x=b$ determines the r pivot variables (if solvable!).

Full column rank $r=n \quad$ Independent columns, $\boldsymbol{N}(A)=\{0\}$, no free variables.
Full row rank $r=m$ Independent rows, at least one solution to $A x=b$, column space is all of \mathbf{R}^{m}. Full rank means full column rank or full row rank.

Fundamental Theorem The nullspace $N(A)$ and row space $C\left(A^{\mathrm{T}}\right)$ are orthogonal complements (perpendicular subspaces of \mathbf{R}^{n} with dimensions r and $n-r$) from $A x=0$. Applied to A^{T}, the column space $C(A)$ is the orthogonal complement of $N\left(A^{\mathrm{T}}\right)$.

Gauss-Jordan method Invert A by row operations on $\left[\begin{array}{ll}A & I\end{array}\right]$ to reach $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$.
Gram-Schmidt orthogonalization $A=Q R \quad$ Independent columns in A, orthonormal columns in Q. Each column q_{j} of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: $\operatorname{diag}(R)>0$.

Graph G Set of n nodes connected pairwise by m edges. A complete graph has all $n(n-1) / 2$ edges between nodes. A tree has only $n-1$ edges and no closed loops. A directed graph has a direction arrow specified on each edge.

Hankel matrix H Constant along each antidiagonal; $h_{i j}$ depends on $i+j$.
Hermitian matrix $A^{\mathrm{H}}=\bar{A}^{\mathrm{T}}=A \quad$ Complex analog of a symmetric matrix: $\overline{a_{j i}}=a_{i j}$.
Hessenberg matrix H Triangular matrix with one extra nonzero adjacent diagonal.
Hilbert matrix $\operatorname{hilb}(n) \quad$ Entries $H_{i j}=1 /(i+j-1)=\int_{0}^{1} x^{i-1} x^{j-1} d x$. Positive definite but extremely small $\lambda_{\text {min }}$ and large condition number.

Hypercube matrix $P_{L}^{2} \quad$ Row $n+1$ counts corners, edges, faces, \ldots, of a cube in \mathbf{R}^{n}.
Identity matrix $I\left(\right.$ or $\left.I_{n}\right) \quad$ Diagonal entries $=1$, off-diagonal entries $=0$.
Incidence matrix of a directed graph The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j.

Indefinite matrix A symmetric matrix with eigenvalues of both signs (+ and -).
Independent vectors v_{1}, \ldots, v_{k} No combination $c_{1} v_{1}+\cdots+c_{k} v_{k}=$ zero vector unless all $c_{i}=0$. If the v 's are the columns of A, the only solution to $A x=0$ is $x=0$.

Inverse matrix $A^{-1} \quad$ Square matrix with $A^{-1} A=I$ and $A A^{-1}=I$. No inverse if $\operatorname{det} A=0$ and $\operatorname{rank}(A)<n$, and $A x=0$ for a nonzero vector x. The inverses of $A B$ and A^{T} are $B^{-1} A^{-1}$ and $\left(A^{-1}\right)^{\mathrm{T}}$ Cofactor formula $\left(A^{-1}\right)_{i j}=C_{j i} / \operatorname{det} A$.

Iterative method A sequence of steps intended to approach the desired solution.
Jordan form $J=M^{-1} A M \quad$ If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives $J=\operatorname{diag}\left(J_{1}, \ldots, J_{s}\right)$. The block J_{k} is $\lambda_{k} I_{k}+N_{k}$ where N_{k} has 1 s on diagonal 1. Each block has one eigenvalue λ_{k} and one eigenvector $(1,0, \ldots, 0)$.

Kirchhoff's Laws Current law: net current (in minus out) is zero at each node. Voltage law: Potential differences (voltage drops) add to zero around any closed loop.

Kronecker product (tensor product) $A \otimes B \quad$ Blocks $a_{i j} B$, eigenvalues $\lambda_{p}(A) \lambda_{q}(B)$.
Krylov subspace $K_{j}(A, b) \quad$ The subspace spanned by $b, A b, \ldots, A^{j-1} b$. Numerical methods approximate $A^{-1} b$ by x_{j} with residual $b-A x_{j}$ in this subspace. A good basis for K_{j} requires only multiplication by A at each step.

Least-squares solution \widehat{x} The vector \widehat{x} that minimizes the error $\|e\|^{2}$ solves $A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b$. Then $e=b-A \widehat{x}$ is orthogonal to all columns of A.

Left inverse $A^{+} \quad$ If A has full column rank n, then $A^{+}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ has $A^{+} A=I_{n}$.
Left nullspace $N\left(A^{\mathrm{T}}\right) \quad$ Nullspace of $A^{\mathrm{T}}=$ "left nullspace" of A because $y^{\mathrm{T}} A=0^{\mathrm{T}}$.
Length $\|x\| \quad$ Square root of $x^{\mathrm{T}} x$ (Pythagoras in n dimensions).
Linear combination $c v+d w$ or $\sum c_{j} v_{j} \quad$ Vector addition and scalar multiplication.
Linear transformation T Each vector v in the input space transforms to $T(v)$ in the output space, and linearity requires $T(c v+d w)=c T(v)+d T(w)$. Examples: Matrix multiplication $A v$, differentiation in function space.

Linearly dependent v_{1}, \ldots, v_{n} A combination other than all $c_{i}=0$ gives $\sum c_{i} v_{i}=0$.
Lucas numbers $L=2,1,3,4, \ldots$, satisfy $L_{n}=L_{n-1}+L_{n-2}=\lambda_{1}^{n}+\lambda_{n}^{2}$, with eigenvalues $\lambda_{1}, \lambda_{2}=(1 \pm \sqrt{5}) / 2$ of the Fibonacci matrix $\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right]$. Compare $L_{0}=2$ with Fibonacci.

Markov matrix $M \quad$ All $m_{i j} \geq 0$ and each column sum is 1 . Largest eigenvalue $\lambda=1$. If $m_{i j}>0$, the columns of M^{k} approach the steady-state eigenvector $M s=s>0$.

Matrix multiplication $A B$ The i, j entry of $A B$ is (row i of $A) \cdot($ column j of B) $=\sum a_{i k} b_{k j}$. By columns: column j of $A B=A$ times column j of B. By rows: row i of A multiplies B. Columns times rows: $A B=$ sum of (column k)(row k). All these equivalent definitions come from the rule that $A B$ times x equals A times $B x$.

Minimal polynomial of A The lowest-degree polynomial with $m(A)=$ zero matrix. The roots of m are eigenvalues, and $m(\lambda) \operatorname{divides} \operatorname{det}(A-\lambda I)$.

Multiplication $A x=x_{1}($ column 1$)+\cdots+x_{n}($ column $n)=$ combination of columns.

Multiplicities $A M$ and $G M$ The algebraic multiplicity $A M$ of an eigenvalue λ is the number of times λ appears as a root of $\operatorname{det}(A-\lambda I)=0$. The geometric multiplicity $G M$ is the number of independent eigenvectors ($=$ dimension of the eigenspace for λ).

Multiplier $\ell_{i j}$ The pivot row j is multiplied by $\ell_{i j}$ and subtracted from row i to eliminate the i, j entry: $\ell_{i j}=($ entry to eliminate $) /(j$ th pivot $)$.

Network A directed graph that has constants c_{1}, \ldots, c_{m} associated with the edges.
Nilpotent matrix N Some power of N is the zero matrix, $N^{k}=0$. The only eigenvalue is $\lambda=0$ (repeated n times). Examples: triangular matrices with zero diagonal.

Norm $\|A\|$ of a matrix \quad The " ℓ^{2} norm" is the maximum ratio $\|A x\| /\|x\|=\sigma_{\text {max }}$. Then $\|A x\| \leq\|A\|\|x\|,\|A B\| \leq\|A\|\|B\|$, and $\|A+B\| \leq\|A\|+\|B\|$. Frobenius norm $\|A\|_{F}^{2}=\sum \sum a_{i j}^{2} ; \ell^{1}$ and ℓ^{∞} norms are largest column and row sums of $\left|a_{i j}\right|$.

Normal equation $A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b$ Gives the least-squares solution to $A x=b$ if A has full rank n. The equation says that (columns of $A) \cdot(b-A \widehat{x})=0$.

Normal matrix $N \quad N N^{\mathrm{T}}=N^{\mathrm{T}} N$, leads to orthonormal (complex) eigenvectors.
Nullspace matrix $N \quad$ The columns of N are the $n-r$ special solutions to $A s=0$.
Nullspace $N(A)$ Solutions to $A x=0$. Dimension $n-r=(\#$ columns $)-$ rank.
Orthogonal matrix Q Square matrix with orthonormal columns, so $Q^{\mathrm{T}} Q=I$ implies $Q^{\mathrm{T}}=Q^{-1}$. Preserves length and angles, $\|Q x\|=\|x\|$ and $(Q x)^{\mathrm{T}}(Q y)=x^{\mathrm{T}} y$. All $|\lambda|=1$, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Orthogonal subspaces Every v in \mathbf{V} is orthogonal to every w in \mathbf{W}.
Orthonormal vectors q_{1}, \ldots, q_{n} Dot products are $q_{i}^{\mathrm{T}} q_{j}=0$, if $i \neq j$ and $q_{i}^{\mathrm{T}} q_{j}=1$. The matrix Q with these orthonormal columns has $Q^{\mathrm{T}} Q=I$. If $m=n$, then $Q^{\mathrm{T}}=Q^{-1}$ and q_{1}, \ldots, q_{n} is an orthonormal basis for \mathbf{R}^{n} : every $v=\sum\left(v^{\mathrm{T}} q_{j}\right) q_{j}$.

Outer product is $u v^{T} \quad$ column times row $=$ rank-1 matrix.
Partial pivoting In elimination, the j th pivot is chosen as the largest available entry (in absolute value) in column j. Then all multipliers have $\left|\ell_{i j}\right| \leq 1$. Roundoff error is controlled (depending on the condition number of A).

Particular solution x_{p} Any solution to $A x=b$; often x_{p} has free variables $=0$.
Pascal matrix $P_{S}=\operatorname{pascal}(n) \quad$ The symmetric matrix with binomial entries $\binom{i+j-2}{i-1}$. $P_{S}=P_{L} P_{U}$ all contain Pascal's triangle with det $=1$ (see index for more properties).

Permutation matrix $P \quad$ There are n ! orders of $1, \ldots, n$; the $n!P$'s have the rows of I in those orders. $P A$ puts the rows of A in the same order. P is a product of row exchanges $P_{i j} ; P$ is even or odd $(\operatorname{det} P=1$ or -1$)$ based on the number of exchanges.

Pivot columns of A Columns that contain pivots after row reduction; not combinations of earlier columns. The pivot columns are a basis for the column space.

Pivot d The first nonzero entry when a row is used in elimination.
Plane (or hyperplane) in $\mathbf{R}^{n} \quad$ Solutions to $a^{\mathrm{T}} x=0$ give the plane (dimension $n-1$) perpendicular to $a \neq 0$.

Polar decomposition $A=Q H \quad$ Orthogonal Q, positive (semi)definite H.
Positive definite matrix A Symmetric matrix with positive eigenvalues and positive pivots. Definition: $x^{\mathrm{T}} A x>0$ unless $x=0$.

Projection matrix P onto subspace S Projection $p=P b$ is the closest point to b in \mathbf{S}, error $e=b-P b$ is perpendicular to $\mathbf{S} . P^{2}=P=P^{\mathrm{T}}$, eigenvalues are 1 or 0 , eigenvectors are in \mathbf{S} or \mathbf{S}^{\perp}. If columns of $A=$ basis for \mathbf{S}, then $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$.

Projection $p=a\left(a^{\mathrm{T}} b / a^{\mathrm{T}} a\right)$ onto the line through $a \quad P=a a^{\mathrm{T}} / a^{\mathrm{T}} a$ has rank 1.
Pseudoinverse A^{+}(Moore-Penrose inverse) The n by m matrix that "inverts" A from column space back to row space, with $N\left(A^{+}\right)=\boldsymbol{N}\left(A^{\mathrm{T}}\right) . A^{+} A$ and $A A^{+}$are the projection matrices onto the row space and column space. $\operatorname{rank}\left(A^{+}\right)=\operatorname{rank}(A)$.

Random matrix $\operatorname{rand}(n)$ or randn (n) MATLAB creates a matrix with random entries, uniformly distributed on $\left[\begin{array}{ll}0 & 1\end{array}\right]$ for rand, and standard normal distribution for randn.

Rank 1 matrix $A=u \nu^{\mathrm{T}} \neq 0 \quad$ Column and row spaces $=$ lines $c u$ and $c v$.
Rank $r(A) \quad$ Equals number of pivots $=$ dimension of column space $=$ dimension of row space.

Rayleigh quotient $q(x)=x^{\mathrm{T}} A x / x^{\mathrm{T}} x \quad$ For $A=A^{\mathrm{T}}, \lambda_{\text {min }} \leq q(x) \leq \lambda_{\text {max }}$. Those extremes are reached at the eigenvectors x for $\lambda_{\text {min }}(A)$ and $\lambda_{\text {max }}(A)$.

Reduced row echelon form $R=\operatorname{rref}(A) \quad$ Pivots $=1$; zeros above and below pivots; r nonzero rows of R give a basis for the row space of A.

Reflection matrix $Q=I-2 u u^{\mathrm{T}}$ The unit vector u is reflected to $Q u=-u$. All vectors x in the plane $u^{\mathrm{T}} x=0$ are unchanged because $Q x=x$. The "Householder matrix" has $Q^{\mathrm{T}}=Q^{-1}=Q$.

Right inverse $A^{+} \quad$ If A has full row rank m, then $A^{+}=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1}$ has $A A^{+}=I_{m}$.

Rotation matrix $R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ rotates the plane by θ, and $R^{-1}=R^{\mathrm{T}}$ rotates back by $-\theta$. Orthogonal matrix, eigenvalues $e^{i \theta}$ and $e^{-i \theta}$, eigenvectors $(1, \pm i)$.

Row picture of $A x=b$ Each equation gives a plane in \mathbf{R}^{n} planes intersect at x.
Row space $C\left(A^{\mathrm{T}}\right)$ All combinations of rows of A. Column vectors by convention.
Saddle point of $f\left(x_{1}, \ldots, x_{n}\right)$ A point where the first derivatives of f are zero and the second derivative matrix $\left(\partial^{2} f / \partial x_{i} \partial x_{j}=\right.$ Hessian matrix) is indefinite.
Schur complement $S=D-C A^{-1} B \quad$ Appears in block elimination on $\left[\begin{array}{cc}A \\ C & B \\ D\end{array}\right]$.
Schwarz inequality $|v \cdot w| \leq\|v\|\|w\| \quad$ Then $\left|v^{\mathrm{T}} A w\right|^{2} \leq\left(v^{\mathrm{T}} A v\right)\left(w^{\mathrm{T}} A w\right)$ if $A=C^{\mathrm{T}} C$.
Semidefinite matrix $A \quad$ (Positive) semidefinite means symmetric with $x^{\mathrm{T}} A x \geq 0$ for all vectors x. Then all eigenvalues $\lambda \geq 0$; no negative pivots.

Similar matrices A and $B \quad B=M^{-1} A M$ has the same eigenvalues as A.
Simplex method for linear programming The minimum cost vector x^{*} is found by moving from corner to lower-cost corner along the edges of the feasible set (where the constraints $A x=b$ and $x \geq 0$ are satisfied). Minimum cost at a corner!

Singular matrix $A \quad$ A square matrix that has no inverse: $\operatorname{det}(A)=0$.
Singular Value Decomposition (SVD) $A=U \Sigma V^{\mathrm{T}}=($ orthogonal U) times (diagonal Σ) times (orthogonal V^{T}) First r columns of U and V are orthonormal bases of $\boldsymbol{C}(A)$ and $C\left(A^{\mathrm{T}}\right)$, with $A v_{i}=\sigma_{i} u_{i}$ and singular value $\sigma_{i}>0$. Last columns of U and V are orthonormal bases of the nullspaces of A^{T} and A.

Skew-symmetric matrix K The transpose is $-K$, since $K_{i j}=-K_{j i}$. Eigenvalues are pure imaginary, eigenvectors are orthogonal, $e^{K t}$ is an orthogonal matrix.

Solvable system $A x=b \quad$ The right side b is in the column space of A.
Spanning set v_{1}, \ldots, v_{m}, for \mathbf{V} Every vector in \mathbf{V} is a combination of v_{1}, \ldots, v_{m}.
Special solutions to $A s=0 \quad$ One free variable is $s_{i}=1$, other free variables $=0$.
Spectral theorem $A=Q \Lambda Q^{\mathrm{T}} \quad$ Real symmetric A has real λ_{i} and orthonormal q_{i}, with $A q_{i}=\lambda_{i} q_{i}$. In mechanics, the q_{i} give the principal axes.

Spectrum of $A \quad$ The set of eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Spectral radius $=\left|\lambda_{\max }\right|$.
Standard basis for $\mathbf{R}^{n} \quad$ Columns of n by n identity matrix (written i, j, k in \mathbf{R}^{3}).
Stiffness matrix $K \quad$ When x gives the movements of the nodes in a discrete structure, $K x$ gives the internal forces. Often $K=A^{\mathrm{T}} C A$, where C contains spring constants from Hooke's Law and $A x=$ stretching (strains) from the movements x.

Subspace \mathbf{S} of \mathbf{V} Any vector space inside \mathbf{V}, including \mathbf{V} and $\mathbf{Z}=\{$ zero vector $\}$.
Sum $\mathbf{V}+\mathbf{W}$ of subspaces \quad Space of all $(v$ in $V)+(w$ in $\mathbf{W})$. Direct sum: $\operatorname{dim}(\mathbf{V}+\mathbf{W})=\operatorname{dim} \mathbf{V}+\operatorname{dim} \mathbf{W}$, when \mathbf{V} and \mathbf{W} share only the zero vector.

Symmetric factorizations $A=L D L^{\mathrm{T}}$ and $A=Q \Lambda Q^{\mathrm{T}} \quad$ The number of positive pivots in D and positive eigenvalues in Λ is the same.

Symmetric matrix A The transpose is $A^{\mathrm{T}}=A$, and $a_{i j}=a_{j i} \cdot A^{-1}$ is also symmetric. All matrices of the form $R^{\mathrm{T}} R$ and $L D L^{\mathrm{T}}$ and $Q \Lambda Q^{\mathrm{T}}$ are symmetric. Symmetric matrices have real eigenvalues in Λ and orthonormal eigenvectors in Q.

Toeplitz matrix T Constant-diagonal matrix, so $t_{i j}$ depends only on $j-i$. Toeplitz matrices represent linear time-invariant filters in signal processing.

Trace of $A \quad$ Sum of diagonal entries $=$ sum of eigenvalues of $A . \operatorname{Tr} A B=\operatorname{Tr} B A$.
Transpose matrix $A^{\mathrm{T}} \quad$ Entries $A_{i j}^{\mathrm{T}}=A_{j i} . A^{\mathrm{T}}$ is n by $m, A^{\mathrm{T}} A$ is square, symmetric, positive semidefinite. The transposes of $A B$ and A^{-1} are $B^{\mathrm{T}} A^{\mathrm{T}}$ and $\left(A^{\mathrm{T}}\right)^{-1}$.

Triangle inequality $\|u+v\| \leq\|u\|+\|v\| \quad$ For matrix norms, $\|A+B\| \leq\|A\|+\|B\|$.
Tridiagonal matrix $T \quad t_{i j}=0$ if $|i-j|>1 . T^{-1}$ has rank 1 above and below diagonal.
Unitary matrix $U^{\mathrm{H}}=\bar{U}^{\mathrm{T}}=U^{-1} \quad$ Orthonormal columns (complex analog of Q).
Vandermonde matrix $V \quad V c=b$ gives the polynomial $p(x)=c_{0}+\cdots+c_{n-1} x^{n-1}$ with $p\left(x_{i}\right)=b_{i}$ at n points. $V_{i j}=\left(x_{i}\right)^{j-1}$, and $\operatorname{det} V=$ product of $\left(x_{k}-x_{i}\right)$ for $k>i$.

Vector addition $v+w=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)=$ diagonal of parallelogram.
Vector space \mathbf{V} Set of vectors such that all combinations $c v+d w$ remain in \mathbf{V}. Eight required rules are given in Section 2.1 for $c v+d w$.

Vector v in $\mathbf{R}^{n} \quad$ Sequence of n real numbers $v=\left(v_{1}, \ldots, v_{n}\right)=$ point in \mathbf{R}^{n}.
Volume of box The rows (or columns) of A generate a box with volume $|\operatorname{det}(A)|$.
Wavelets $w_{j k}(t)$ or vectors $w_{j k} \quad$ Rescale and shift the time axis to create $w_{j k}(t)=w_{00}\left(2^{j} t-k\right)$. Vectors from $w_{00}=(1,1,-1,-1)$ would be $(1,-1,0,0)$ and ($0,0,1,-1$).

