This page animates the iteration (x_{n+1} = Qx_n) on the 6-node PageRank example from Day 5.
sum(x) in the frame title.x_0 = (1/6)\mathbf{1}
Q = \begin{bmatrix} 0 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \end{bmatrix}
x_0 = e_1
Q = \begin{bmatrix} 0 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_4
Q = \begin{bmatrix} 0 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_5
Q = \begin{bmatrix} 0 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
Final states after 30 iterations for each starting vector:
Uniform: 
e_1: 
e_4: 
e_5: 
x_0 = (1/6)\mathbf{1}
P = \begin{bmatrix} 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 1 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \end{bmatrix}
x_0 = e_1
P = \begin{bmatrix} 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 1 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_4
P = \begin{bmatrix} 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 1 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_5
P = \begin{bmatrix} 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 1 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
Final states after 30 iterations for each starting vector:
Uniform: 
e_1: 
e_4: 
e_5: 
x_0 = (1/6)\mathbf{1}
G = 0.85 P + 0.15 \frac{1}{6}\mathbf{1}\mathbf{1}^T = 0.85 P + 0.025 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_1
G = 0.85 P + 0.15 \frac{1}{6}\mathbf{1}\mathbf{1}^T = 0.85 P + 0.025 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \\ 1/6 \end{bmatrix}
x_0 = e_4
G = 0.85 P + 0.15 \frac{1}{6}\mathbf{1}\mathbf{1}^T = 0.85 P + 0.025 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
x_0 = e_5
G = 0.85 P + 0.15 \frac{1}{6}\mathbf{1}\mathbf{1}^T = 0.85 P + 0.025 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
Final states after 30 iterations for each starting vector:
Uniform: 
e_1: 
e_4: 
e_5: 
Raw (Q):
Uniform: 
e_1: 
e_4: 
e_5: 
Corrected (P):
Uniform: 
e_1: 
e_4: 
e_5: 
Teleporting (G):
Uniform: 
e_1: 
e_4: 
e_5: 